基于表面网格变形的下颌骨缺损术后面部预测

IF 1.8 3区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Wen Du , Hao Wang , Chenche Zhao , Zhiming Cui , Jiaqi Li , Wenbo Zhang , Yao Yu , Xin Peng
{"title":"基于表面网格变形的下颌骨缺损术后面部预测","authors":"Wen Du ,&nbsp;Hao Wang ,&nbsp;Chenche Zhao ,&nbsp;Zhiming Cui ,&nbsp;Jiaqi Li ,&nbsp;Wenbo Zhang ,&nbsp;Yao Yu ,&nbsp;Xin Peng","doi":"10.1016/j.jormas.2024.101973","DOIUrl":null,"url":null,"abstract":"<div><div><em>Objectives:</em> This study aims to introduce a novel predictive model for the post-operative facial contours of patients with mandibular defect, addressing limitations in current methodologies that fail to preserve geometric features and lack interpretability.</div><div><em>Methods:</em> Utilizing surface mesh theory and deep learning, our model diverges from traditional point cloud approaches by employing surface triangular mesh grids. We extract latent variables using a Mesh Convolutional Restricted Boltzmann Machines (MCRBM) model to generate a three-dimensional deformation field, aiming to enhance geometric information preservation and interpretability.</div><div><em>Results:</em> Experimental evaluations of our model demonstrate a prediction accuracy of 91.2 %, which represents a significant improvement over traditional machine learning-based methods.</div><div><em>Conclusions:</em> The proposed model offers a promising new tool for pre-operative planning in oral and maxillofacial surgery. It significantly enhances the accuracy of post-operative facial contour predictions for mandibular defect reconstructions, providing substantial advancements over previous approaches.</div></div>","PeriodicalId":55993,"journal":{"name":"Journal of Stomatology Oral and Maxillofacial Surgery","volume":"125 5","pages":"Article 101973"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Postoperative facial prediction for mandibular defect based on surface mesh deformation\",\"authors\":\"Wen Du ,&nbsp;Hao Wang ,&nbsp;Chenche Zhao ,&nbsp;Zhiming Cui ,&nbsp;Jiaqi Li ,&nbsp;Wenbo Zhang ,&nbsp;Yao Yu ,&nbsp;Xin Peng\",\"doi\":\"10.1016/j.jormas.2024.101973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Objectives:</em> This study aims to introduce a novel predictive model for the post-operative facial contours of patients with mandibular defect, addressing limitations in current methodologies that fail to preserve geometric features and lack interpretability.</div><div><em>Methods:</em> Utilizing surface mesh theory and deep learning, our model diverges from traditional point cloud approaches by employing surface triangular mesh grids. We extract latent variables using a Mesh Convolutional Restricted Boltzmann Machines (MCRBM) model to generate a three-dimensional deformation field, aiming to enhance geometric information preservation and interpretability.</div><div><em>Results:</em> Experimental evaluations of our model demonstrate a prediction accuracy of 91.2 %, which represents a significant improvement over traditional machine learning-based methods.</div><div><em>Conclusions:</em> The proposed model offers a promising new tool for pre-operative planning in oral and maxillofacial surgery. It significantly enhances the accuracy of post-operative facial contour predictions for mandibular defect reconstructions, providing substantial advancements over previous approaches.</div></div>\",\"PeriodicalId\":55993,\"journal\":{\"name\":\"Journal of Stomatology Oral and Maxillofacial Surgery\",\"volume\":\"125 5\",\"pages\":\"Article 101973\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stomatology Oral and Maxillofacial Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468785524002192\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stomatology Oral and Maxillofacial Surgery","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468785524002192","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在为下颌骨缺损患者的术后面部轮廓建立一个新的预测模型:本研究旨在为下颌骨缺损患者术后面部轮廓引入一个新的预测模型,解决当前方法无法保留几何特征和缺乏可解释性的局限性:利用曲面网格理论和深度学习,我们的模型采用曲面三角形网格,与传统的点云方法有所不同。我们使用网格卷积限制玻尔兹曼机(MCRBM)模型提取潜变量,生成三维变形场,旨在增强几何信息的保存和可解释性:结果:对我们的模型进行的实验评估表明,预测准确率达到 91.2%,与传统的基于机器学习的方法相比有了显著提高:结论:所提出的模型为口腔颌面外科的术前规划提供了一种前景广阔的新工具。结论:所提出的模型为口腔颌面外科的术前规划提供了一种很有前途的新工具,它大大提高了下颌缺损重建术后面部轮廓预测的准确性,比以前的方法有了很大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Postoperative facial prediction for mandibular defect based on surface mesh deformation

Postoperative facial prediction for mandibular defect based on surface mesh deformation
Objectives: This study aims to introduce a novel predictive model for the post-operative facial contours of patients with mandibular defect, addressing limitations in current methodologies that fail to preserve geometric features and lack interpretability.
Methods: Utilizing surface mesh theory and deep learning, our model diverges from traditional point cloud approaches by employing surface triangular mesh grids. We extract latent variables using a Mesh Convolutional Restricted Boltzmann Machines (MCRBM) model to generate a three-dimensional deformation field, aiming to enhance geometric information preservation and interpretability.
Results: Experimental evaluations of our model demonstrate a prediction accuracy of 91.2 %, which represents a significant improvement over traditional machine learning-based methods.
Conclusions: The proposed model offers a promising new tool for pre-operative planning in oral and maxillofacial surgery. It significantly enhances the accuracy of post-operative facial contour predictions for mandibular defect reconstructions, providing substantial advancements over previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Stomatology Oral and Maxillofacial Surgery
Journal of Stomatology Oral and Maxillofacial Surgery Surgery, Dentistry, Oral Surgery and Medicine, Otorhinolaryngology and Facial Plastic Surgery
CiteScore
2.30
自引率
9.10%
发文量
0
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信