Sophie M D D Fitzsimmons, Tjardo S Postma, A Dilene van Campen, Chris Vriend, Neeltje M Batelaan, Patricia van Oppen, Adriaan W Hoogendoorn, Ysbrand D van der Werf, Odile A van den Heuvel
{"title":"TMS诱导的可塑性改善强迫症 I 的认知控制:随机试验的临床和神经影像学结果","authors":"Sophie M D D Fitzsimmons, Tjardo S Postma, A Dilene van Campen, Chris Vriend, Neeltje M Batelaan, Patricia van Oppen, Adriaan W Hoogendoorn, Ysbrand D van der Werf, Odile A van den Heuvel","doi":"10.1016/j.biopsych.2024.06.029","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for obsessive-compulsive disorder (OCD). The neurobiological mechanisms of rTMS in OCD have been incompletely characterized. We compared clinical outcomes and changes in task-based brain activation following 3 different rTMS protocols, all combined with exposure and response prevention.</p><p><strong>Methods: </strong>In this 3-arm proof-of-concept randomized trial, 61 treatment-refractory adult patients with OCD received 16 sessions of rTMS immediately before exposure and response prevention over 8 weeks, with task-based functional magnetic resonance imaging scans and clinical assessments before and after treatment. Patients received high-frequency rTMS to the left dorsolateral prefrontal cortex (n = 19 [13 women/6 men]), high-frequency rTMS to the left pre-supplementary motor area (preSMA) (n = 23 [13 women/10 men]), or control rTMS to the vertex (n = 19 [13 women/6 men]). Changes in task-based functional magnetic resonance imaging activation before/after treatment were compared using both a Bayesian region of interest and a general linear model whole-brain approach.</p><p><strong>Results: </strong>Mean OCD symptom severity decreased significantly in all treatment groups (Δ = -10.836, p < .001, 95% CI -12.504 to -9.168), with no differences between groups. Response rate in the entire sample was 57.4%. The dorsolateral prefrontal cortex rTMS group showed decreased planning-related activation after treatment that was associated with greater symptom improvement. No group-level activation changes were observed for the preSMA and vertex rTMS groups. Participants in the preSMA group with greater symptom improvement showed decreased error-related activation, and symptom improvement in the vertex group was associated with increased inhibition-related activation.</p><p><strong>Conclusions: </strong>rTMS to preSMA and dorsolateral prefrontal cortex combined with exposure and response prevention led to activation decreases in targeted task networks in individuals showing greater symptom improvement, although we observed no differences in symptom reduction between groups.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcranial Magnetic Stimulation-Induced Plasticity Improving Cognitive Control in Obsessive-Compulsive Disorder, Part I: Clinical and Neuroimaging Outcomes From a Randomized Trial.\",\"authors\":\"Sophie M D D Fitzsimmons, Tjardo S Postma, A Dilene van Campen, Chris Vriend, Neeltje M Batelaan, Patricia van Oppen, Adriaan W Hoogendoorn, Ysbrand D van der Werf, Odile A van den Heuvel\",\"doi\":\"10.1016/j.biopsych.2024.06.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for obsessive-compulsive disorder (OCD). The neurobiological mechanisms of rTMS in OCD have been incompletely characterized. We compared clinical outcomes and changes in task-based brain activation following 3 different rTMS protocols, all combined with exposure and response prevention.</p><p><strong>Methods: </strong>In this 3-arm proof-of-concept randomized trial, 61 treatment-refractory adult patients with OCD received 16 sessions of rTMS immediately before exposure and response prevention over 8 weeks, with task-based functional magnetic resonance imaging scans and clinical assessments before and after treatment. Patients received high-frequency rTMS to the left dorsolateral prefrontal cortex (n = 19 [13 women/6 men]), high-frequency rTMS to the left pre-supplementary motor area (preSMA) (n = 23 [13 women/10 men]), or control rTMS to the vertex (n = 19 [13 women/6 men]). Changes in task-based functional magnetic resonance imaging activation before/after treatment were compared using both a Bayesian region of interest and a general linear model whole-brain approach.</p><p><strong>Results: </strong>Mean OCD symptom severity decreased significantly in all treatment groups (Δ = -10.836, p < .001, 95% CI -12.504 to -9.168), with no differences between groups. Response rate in the entire sample was 57.4%. The dorsolateral prefrontal cortex rTMS group showed decreased planning-related activation after treatment that was associated with greater symptom improvement. No group-level activation changes were observed for the preSMA and vertex rTMS groups. Participants in the preSMA group with greater symptom improvement showed decreased error-related activation, and symptom improvement in the vertex group was associated with increased inhibition-related activation.</p><p><strong>Conclusions: </strong>rTMS to preSMA and dorsolateral prefrontal cortex combined with exposure and response prevention led to activation decreases in targeted task networks in individuals showing greater symptom improvement, although we observed no differences in symptom reduction between groups.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.06.029\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.06.029","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Transcranial Magnetic Stimulation-Induced Plasticity Improving Cognitive Control in Obsessive-Compulsive Disorder, Part I: Clinical and Neuroimaging Outcomes From a Randomized Trial.
Background: Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for obsessive-compulsive disorder (OCD). The neurobiological mechanisms of rTMS in OCD have been incompletely characterized. We compared clinical outcomes and changes in task-based brain activation following 3 different rTMS protocols, all combined with exposure and response prevention.
Methods: In this 3-arm proof-of-concept randomized trial, 61 treatment-refractory adult patients with OCD received 16 sessions of rTMS immediately before exposure and response prevention over 8 weeks, with task-based functional magnetic resonance imaging scans and clinical assessments before and after treatment. Patients received high-frequency rTMS to the left dorsolateral prefrontal cortex (n = 19 [13 women/6 men]), high-frequency rTMS to the left pre-supplementary motor area (preSMA) (n = 23 [13 women/10 men]), or control rTMS to the vertex (n = 19 [13 women/6 men]). Changes in task-based functional magnetic resonance imaging activation before/after treatment were compared using both a Bayesian region of interest and a general linear model whole-brain approach.
Results: Mean OCD symptom severity decreased significantly in all treatment groups (Δ = -10.836, p < .001, 95% CI -12.504 to -9.168), with no differences between groups. Response rate in the entire sample was 57.4%. The dorsolateral prefrontal cortex rTMS group showed decreased planning-related activation after treatment that was associated with greater symptom improvement. No group-level activation changes were observed for the preSMA and vertex rTMS groups. Participants in the preSMA group with greater symptom improvement showed decreased error-related activation, and symptom improvement in the vertex group was associated with increased inhibition-related activation.
Conclusions: rTMS to preSMA and dorsolateral prefrontal cortex combined with exposure and response prevention led to activation decreases in targeted task networks in individuals showing greater symptom improvement, although we observed no differences in symptom reduction between groups.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.