加兰标记图法

IF 1 3区 数学 Q1 MATHEMATICS
Alan Lew
{"title":"加兰标记图法","authors":"Alan Lew","doi":"10.1016/j.laa.2024.07.018","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>k</em>-th token graph of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is the graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> whose vertices are the <em>k</em>-subsets of <em>V</em> and whose edges are all pairs of <em>k</em>-subsets <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> such that the symmetric difference of <em>A</em> and <em>B</em> forms an edge in <em>G</em>. Let <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the Laplacian matrix of <em>G</em>, and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the Laplacian matrix of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. It was shown by Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez that for any graph <em>G</em> on <em>n</em> vertices and any <span><math><mn>0</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span>, the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is contained in that of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p><p>Here, we continue to study the relation between the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and that of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that, for <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span>, any eigenvalue <em>λ</em> of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> that is not contained in the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfies<span><span><span><math><mi>k</mi><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mi>λ</mi><mo>≤</mo><mi>k</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> is the second smallest eigenvalue of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (also known as the algebraic connectivity of <em>G</em>), and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> is its largest eigenvalue. Our proof relies on an adaptation of Garland's method, originally developed for the study of high-dimensional Laplacians of simplicial complexes.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003082/pdfft?md5=bbdbf5062aa82eabe502f1effacd1b30&pid=1-s2.0-S0024379524003082-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Garland's method for token graphs\",\"authors\":\"Alan Lew\",\"doi\":\"10.1016/j.laa.2024.07.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>k</em>-th token graph of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is the graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> whose vertices are the <em>k</em>-subsets of <em>V</em> and whose edges are all pairs of <em>k</em>-subsets <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> such that the symmetric difference of <em>A</em> and <em>B</em> forms an edge in <em>G</em>. Let <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the Laplacian matrix of <em>G</em>, and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the Laplacian matrix of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. It was shown by Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez that for any graph <em>G</em> on <em>n</em> vertices and any <span><math><mn>0</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span>, the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is contained in that of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p><p>Here, we continue to study the relation between the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and that of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that, for <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span>, any eigenvalue <em>λ</em> of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> that is not contained in the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfies<span><span><span><math><mi>k</mi><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mi>λ</mi><mo>≤</mo><mi>k</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> is the second smallest eigenvalue of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (also known as the algebraic connectivity of <em>G</em>), and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> is its largest eigenvalue. Our proof relies on an adaptation of Garland's method, originally developed for the study of high-dimensional Laplacians of simplicial complexes.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003082/pdfft?md5=bbdbf5062aa82eabe502f1effacd1b30&pid=1-s2.0-S0024379524003082-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003082\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003082","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个图的第-个标记图是这样的图,它的顶点是 的-子集,它的边是所有的-子集对,使得 和 的对称差在 。Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete 和 Zaragoza Martínez 证明,对于任意顶点上的图和任意 , 的谱包含在 的谱中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Garland's method for token graphs

The k-th token graph of a graph G=(V,E) is the graph Fk(G) whose vertices are the k-subsets of V and whose edges are all pairs of k-subsets A,B such that the symmetric difference of A and B forms an edge in G. Let L(G) be the Laplacian matrix of G, and Lk(G) be the Laplacian matrix of Fk(G). It was shown by Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez that for any graph G on n vertices and any 0kn/2, the spectrum of L(G) is contained in that of Lk(G).

Here, we continue to study the relation between the spectrum of Lk(G) and that of Lk1(G). In particular, we show that, for 1kn/2, any eigenvalue λ of Lk(G) that is not contained in the spectrum of Lk1(G) satisfiesk(λ2(L(G))k+1)λkλn(L(G)), where λ2(L(G)) is the second smallest eigenvalue of L(G) (also known as the algebraic connectivity of G), and λn(L(G)) is its largest eigenvalue. Our proof relies on an adaptation of Garland's method, originally developed for the study of high-dimensional Laplacians of simplicial complexes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信