{"title":"加兰标记图法","authors":"Alan Lew","doi":"10.1016/j.laa.2024.07.018","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>k</em>-th token graph of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is the graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> whose vertices are the <em>k</em>-subsets of <em>V</em> and whose edges are all pairs of <em>k</em>-subsets <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> such that the symmetric difference of <em>A</em> and <em>B</em> forms an edge in <em>G</em>. Let <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the Laplacian matrix of <em>G</em>, and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the Laplacian matrix of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. It was shown by Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez that for any graph <em>G</em> on <em>n</em> vertices and any <span><math><mn>0</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span>, the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is contained in that of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p><p>Here, we continue to study the relation between the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and that of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that, for <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span>, any eigenvalue <em>λ</em> of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> that is not contained in the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfies<span><span><span><math><mi>k</mi><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mi>λ</mi><mo>≤</mo><mi>k</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> is the second smallest eigenvalue of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (also known as the algebraic connectivity of <em>G</em>), and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> is its largest eigenvalue. Our proof relies on an adaptation of Garland's method, originally developed for the study of high-dimensional Laplacians of simplicial complexes.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003082/pdfft?md5=bbdbf5062aa82eabe502f1effacd1b30&pid=1-s2.0-S0024379524003082-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Garland's method for token graphs\",\"authors\":\"Alan Lew\",\"doi\":\"10.1016/j.laa.2024.07.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>k</em>-th token graph of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is the graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> whose vertices are the <em>k</em>-subsets of <em>V</em> and whose edges are all pairs of <em>k</em>-subsets <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> such that the symmetric difference of <em>A</em> and <em>B</em> forms an edge in <em>G</em>. Let <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the Laplacian matrix of <em>G</em>, and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the Laplacian matrix of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. It was shown by Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez that for any graph <em>G</em> on <em>n</em> vertices and any <span><math><mn>0</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span>, the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is contained in that of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p><p>Here, we continue to study the relation between the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and that of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that, for <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span>, any eigenvalue <em>λ</em> of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> that is not contained in the spectrum of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfies<span><span><span><math><mi>k</mi><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mi>λ</mi><mo>≤</mo><mi>k</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> is the second smallest eigenvalue of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (also known as the algebraic connectivity of <em>G</em>), and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> is its largest eigenvalue. Our proof relies on an adaptation of Garland's method, originally developed for the study of high-dimensional Laplacians of simplicial complexes.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003082/pdfft?md5=bbdbf5062aa82eabe502f1effacd1b30&pid=1-s2.0-S0024379524003082-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003082\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003082","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The k-th token graph of a graph is the graph whose vertices are the k-subsets of V and whose edges are all pairs of k-subsets such that the symmetric difference of A and B forms an edge in G. Let be the Laplacian matrix of G, and be the Laplacian matrix of . It was shown by Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez that for any graph G on n vertices and any , the spectrum of is contained in that of .
Here, we continue to study the relation between the spectrum of and that of . In particular, we show that, for , any eigenvalue λ of that is not contained in the spectrum of satisfies where is the second smallest eigenvalue of (also known as the algebraic connectivity of G), and is its largest eigenvalue. Our proof relies on an adaptation of Garland's method, originally developed for the study of high-dimensional Laplacians of simplicial complexes.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.