用于计算能力网络中跨域资源调度的 DPU 增强型多代理行动者批判算法

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shuaichao Wang;Shaoyong Guo;Jiakai Hao;Yinlin Ren;Feng Qi
{"title":"用于计算能力网络中跨域资源调度的 DPU 增强型多代理行动者批判算法","authors":"Shuaichao Wang;Shaoyong Guo;Jiakai Hao;Yinlin Ren;Feng Qi","doi":"10.1109/TNSM.2024.3434997","DOIUrl":null,"url":null,"abstract":"The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6008-6025"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network\",\"authors\":\"Shuaichao Wang;Shaoyong Guo;Jiakai Hao;Yinlin Ren;Feng Qi\",\"doi\":\"10.1109/TNSM.2024.3434997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6008-6025\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10613001/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10613001/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network
The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信