{"title":"用于计算能力网络中跨域资源调度的 DPU 增强型多代理行动者批判算法","authors":"Shuaichao Wang;Shaoyong Guo;Jiakai Hao;Yinlin Ren;Feng Qi","doi":"10.1109/TNSM.2024.3434997","DOIUrl":null,"url":null,"abstract":"The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6008-6025"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network\",\"authors\":\"Shuaichao Wang;Shaoyong Guo;Jiakai Hao;Yinlin Ren;Feng Qi\",\"doi\":\"10.1109/TNSM.2024.3434997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6008-6025\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10613001/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10613001/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DPU-Enhanced Multi-Agent Actor-Critic Algorithm for Cross-Domain Resource Scheduling in Computing Power Network
The distribution of computing resources in the Computing Power Network (CPN) is uneven, leading to an imbalance in resource supply and demand within domains, necessitating cross-domain resource scheduling. To address the cross-domain resource scheduling challenge in CPN, this paper presents an Improved Multi-Agent Actor-Critic (IMAAC) resource scheduling approach leveraging Data Processing Unit (DPU) offloading. Initially, we introduce a cross-domain resource scheduling architecture tailored for CPN by leveraging DPU offloading. Specifically, we delegate certain functionalities of the Multi-Agent Deep Reinforcement Learning (MADRL) Agent to DPUs, aiming to mitigate communication costs incurred during the generation of cross-domain scheduling decisions. Second, we introduce the parallel experience ensemble and multi-head attention mechanism in the Multi-Agent Actor-Critic (MAAC) framework to compress the state-space dimensionality of agent association across domains. Finally, we introduce the parallelized dual-policy network structure to mitigate training instability and convergence challenges within the actor and critic networks. Experimental results showcase that IMAAC achieves noteworthy reductions of 5.98%~13.56%, 23.54%~33.55%, and 41.17%~58.88% in total system delay, energy consumption, and the number of discarded tasks, respectively, compared to benchmark experiments.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.