PHaul:基于 PPO 的转发代理,用于 Sub6 增强型综合接入和回程网络

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jorge Pueyo;Daniel Camps-Mur;Miguel Catalan-Cid
{"title":"PHaul:基于 PPO 的转发代理,用于 Sub6 增强型综合接入和回程网络","authors":"Jorge Pueyo;Daniel Camps-Mur;Miguel Catalan-Cid","doi":"10.1109/TNSM.2024.3435505","DOIUrl":null,"url":null,"abstract":"3GPP Integrated Access and Backhaul (IAB) allows operators to deploy outdoor mm-wave access networks in a cost-efficient manner, by reusing the same spectrum in access and backhaul. In IAB networks the performance bottleneck is the wireless backhaul segment, where efficient forwarding strategies are needed to effectively use the available capacity. In addition, the performance of the mm-wave IAB backhaul segment is contingent on the availability of line of sight (LoS) conditions in the selected deployment sites. To mitigate LoS dependence, in this paper, we propose to complement the mm-wave backhaul segment of IAB networks with additional Sub6 backhaul links, which contribute to the capacity and robustness of the backhaul network. We refer to IAB networks combining Sub6 and mm-wave links in the backhaul as Sub6 enhanced IAB networks. In this context, the main contribution of this paper is PHaul, a forwarding engine for Sub6 enhanced IAB networks that accomodates different traffic engineering criteria, and combines an offline path selection heuristic with an online Deep Reinforcement Learning (DRL) agent based on Proximal Policy Optimization (PPO). By leveraging a network digital twin of the IAB wireless backhaul, PHaul periodically samples the input traffic of the backhaul network and updates flow to path mappings, with execution times below 10 seconds in realistic backhaul topologies. We present an exhaustive performance evaluation, where we demonstrate that PHaul can achieve gains of up to 36% in throughput efficiency and of up to 20% in fairness, when compared against two alternative heuristics in a wide range of network configurations. We also demonstrate that PHaul is robust to differences between the network topologies considered in the training and inference phases, which can occur in practice due to link failures.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6273-6289"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PHaul: A PPO-Based Forwarding Agent for Sub6-Enhanced Integrated Access and Backhaul Networks\",\"authors\":\"Jorge Pueyo;Daniel Camps-Mur;Miguel Catalan-Cid\",\"doi\":\"10.1109/TNSM.2024.3435505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3GPP Integrated Access and Backhaul (IAB) allows operators to deploy outdoor mm-wave access networks in a cost-efficient manner, by reusing the same spectrum in access and backhaul. In IAB networks the performance bottleneck is the wireless backhaul segment, where efficient forwarding strategies are needed to effectively use the available capacity. In addition, the performance of the mm-wave IAB backhaul segment is contingent on the availability of line of sight (LoS) conditions in the selected deployment sites. To mitigate LoS dependence, in this paper, we propose to complement the mm-wave backhaul segment of IAB networks with additional Sub6 backhaul links, which contribute to the capacity and robustness of the backhaul network. We refer to IAB networks combining Sub6 and mm-wave links in the backhaul as Sub6 enhanced IAB networks. In this context, the main contribution of this paper is PHaul, a forwarding engine for Sub6 enhanced IAB networks that accomodates different traffic engineering criteria, and combines an offline path selection heuristic with an online Deep Reinforcement Learning (DRL) agent based on Proximal Policy Optimization (PPO). By leveraging a network digital twin of the IAB wireless backhaul, PHaul periodically samples the input traffic of the backhaul network and updates flow to path mappings, with execution times below 10 seconds in realistic backhaul topologies. We present an exhaustive performance evaluation, where we demonstrate that PHaul can achieve gains of up to 36% in throughput efficiency and of up to 20% in fairness, when compared against two alternative heuristics in a wide range of network configurations. We also demonstrate that PHaul is robust to differences between the network topologies considered in the training and inference phases, which can occur in practice due to link failures.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6273-6289\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10614224/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10614224/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHaul: A PPO-Based Forwarding Agent for Sub6-Enhanced Integrated Access and Backhaul Networks
3GPP Integrated Access and Backhaul (IAB) allows operators to deploy outdoor mm-wave access networks in a cost-efficient manner, by reusing the same spectrum in access and backhaul. In IAB networks the performance bottleneck is the wireless backhaul segment, where efficient forwarding strategies are needed to effectively use the available capacity. In addition, the performance of the mm-wave IAB backhaul segment is contingent on the availability of line of sight (LoS) conditions in the selected deployment sites. To mitigate LoS dependence, in this paper, we propose to complement the mm-wave backhaul segment of IAB networks with additional Sub6 backhaul links, which contribute to the capacity and robustness of the backhaul network. We refer to IAB networks combining Sub6 and mm-wave links in the backhaul as Sub6 enhanced IAB networks. In this context, the main contribution of this paper is PHaul, a forwarding engine for Sub6 enhanced IAB networks that accomodates different traffic engineering criteria, and combines an offline path selection heuristic with an online Deep Reinforcement Learning (DRL) agent based on Proximal Policy Optimization (PPO). By leveraging a network digital twin of the IAB wireless backhaul, PHaul periodically samples the input traffic of the backhaul network and updates flow to path mappings, with execution times below 10 seconds in realistic backhaul topologies. We present an exhaustive performance evaluation, where we demonstrate that PHaul can achieve gains of up to 36% in throughput efficiency and of up to 20% in fairness, when compared against two alternative heuristics in a wide range of network configurations. We also demonstrate that PHaul is robust to differences between the network topologies considered in the training and inference phases, which can occur in practice due to link failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信