{"title":"铁结合能力映射食物来源转铁蛋白的命运:综述。","authors":"Xiao Chen, Xing Zhang, Yong Wu, Zhongliang Wang, Tian Yu, Pingduo Chen, Ping Tong, Jinyan Gao, Hongbing Chen","doi":"10.1021/acs.jafc.4c04827","DOIUrl":null,"url":null,"abstract":"<p><p>As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions <i>in vivo</i>. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":"17771-17781"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Iron Binding Ability Maps the Fate of Food-Derived Transferrins: A Review.\",\"authors\":\"Xiao Chen, Xing Zhang, Yong Wu, Zhongliang Wang, Tian Yu, Pingduo Chen, Ping Tong, Jinyan Gao, Hongbing Chen\",\"doi\":\"10.1021/acs.jafc.4c04827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions <i>in vivo</i>. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\" \",\"pages\":\"17771-17781\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c04827\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c04827","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Iron Binding Ability Maps the Fate of Food-Derived Transferrins: A Review.
As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions in vivo. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.