{"title":"二甲双胍诱导的转化酶折叠:酶动力学和活性调节。","authors":"Meng-Jie Tang, Yu-Tong Ye, Zhen-Zhen Li, Mi-Zhuan Li, Pan-Pan Chen, Qi-Le Zuo, Mian Li, Zhong-Xiu Chen","doi":"10.1021/acs.jafc.4c03099","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of metformin on invertase activity and its inhibition on sucrose digestion were studied. The rapid unfolding kinetics of invertases, followed a two-state model with an inactive intermediate formation. The dynamic interaction between metformin and invertase caused the secondary structure of the enzyme to become less β-sheet, more α-helix, and random coiling oriented, which weakened the binding force between enzyme and its substrate. Metformin acted as a chaotrope and disrupted the hydrogen bonds of water, which facilitated the unfolding of invertase. However, some sugar alcohols, which promoted the H-bond formation of water, could repair the secondary structure of metformin-denatured invertase and therefore regulate the enzyme activity. This research enriches our understanding of the mechanism of enzyme unfolding induced by guanidine compounds. Moreover, because metformin and sugar substitutes are of concern to diabetes, this research also provides useful information for understanding the activity of the digestive enzyme that coexists with metformin and sugar alcohols.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":"17977-17988"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metformin-Induced Invertase Unfolding: Enzyme Kinetics and Activity Regulation.\",\"authors\":\"Meng-Jie Tang, Yu-Tong Ye, Zhen-Zhen Li, Mi-Zhuan Li, Pan-Pan Chen, Qi-Le Zuo, Mian Li, Zhong-Xiu Chen\",\"doi\":\"10.1021/acs.jafc.4c03099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of metformin on invertase activity and its inhibition on sucrose digestion were studied. The rapid unfolding kinetics of invertases, followed a two-state model with an inactive intermediate formation. The dynamic interaction between metformin and invertase caused the secondary structure of the enzyme to become less β-sheet, more α-helix, and random coiling oriented, which weakened the binding force between enzyme and its substrate. Metformin acted as a chaotrope and disrupted the hydrogen bonds of water, which facilitated the unfolding of invertase. However, some sugar alcohols, which promoted the H-bond formation of water, could repair the secondary structure of metformin-denatured invertase and therefore regulate the enzyme activity. This research enriches our understanding of the mechanism of enzyme unfolding induced by guanidine compounds. Moreover, because metformin and sugar substitutes are of concern to diabetes, this research also provides useful information for understanding the activity of the digestive enzyme that coexists with metformin and sugar alcohols.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\" \",\"pages\":\"17977-17988\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c03099\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c03099","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Metformin-Induced Invertase Unfolding: Enzyme Kinetics and Activity Regulation.
The effects of metformin on invertase activity and its inhibition on sucrose digestion were studied. The rapid unfolding kinetics of invertases, followed a two-state model with an inactive intermediate formation. The dynamic interaction between metformin and invertase caused the secondary structure of the enzyme to become less β-sheet, more α-helix, and random coiling oriented, which weakened the binding force between enzyme and its substrate. Metformin acted as a chaotrope and disrupted the hydrogen bonds of water, which facilitated the unfolding of invertase. However, some sugar alcohols, which promoted the H-bond formation of water, could repair the secondary structure of metformin-denatured invertase and therefore regulate the enzyme activity. This research enriches our understanding of the mechanism of enzyme unfolding induced by guanidine compounds. Moreover, because metformin and sugar substitutes are of concern to diabetes, this research also provides useful information for understanding the activity of the digestive enzyme that coexists with metformin and sugar alcohols.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.