通过比较转录组学分析,揭示营养物质对巴氏杆菌生物膜产生(R)-2-(4-羟基苯氧基)丙酸的调控作用。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2024-11-01 Epub Date: 2024-07-30 DOI:10.1007/s00449-024-03070-9
Shuping Zou, Yizhi Ma, Lixiang Zhao, Xiaomin Chen, Hailing Gao, Juan Chen, Yaping Xue, Yuguo Zheng
{"title":"通过比较转录组学分析,揭示营养物质对巴氏杆菌生物膜产生(R)-2-(4-羟基苯氧基)丙酸的调控作用。","authors":"Shuping Zou, Yizhi Ma, Lixiang Zhao, Xiaomin Chen, Hailing Gao, Juan Chen, Yaping Xue, Yuguo Zheng","doi":"10.1007/s00449-024-03070-9","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1803-1814"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse.\",\"authors\":\"Shuping Zou, Yizhi Ma, Lixiang Zhao, Xiaomin Chen, Hailing Gao, Juan Chen, Yaping Xue, Yuguo Zheng\",\"doi\":\"10.1007/s00449-024-03070-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1803-1814\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03070-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03070-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碳和氮对真菌生物膜的形态结构和代谢产物的产生起着根本性的作用。然而,营养物质的调控机制仍有待充分了解。本研究比较了两种不同碳源和氮源培养基(GY:葡萄糖为碳源,酵母提取物为氮源;MT:甘露醇为碳源,胰蛋白胨为氮源)中巴氏杆菌生物膜的形成和 (R)-2-(4-Hydroxyphenoxy)propanoic acid 的产生。在 MT 培养基中,R-HPPA 的产量比在 GY 培养基中增加了 2.85 倍。在 GY 和 MT 培养基中发现了不同的真菌生物膜形态和结构。比较转录组学发现,丝裂原活化蛋白激酶(MAPK)通路和多糖降解基因的上调影响了 MT 培养基生物膜的菌丝形态和胞外聚合物质(EPS)的多糖产量。与 NADH 合成(碳代谢、氨基酸代谢、谷氨酸循环)相关的基因上调会导致 NADH 积累,并引发 R-HPPA 产量的增加。这些数据为今后调节真菌生物膜形态和提高高价值化合物产量的研究提供了宝贵的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse.

Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse.

Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信