高分辨率全球产量潜力图,与地方相关,用于有针对性地改进作物生产

IF 23.6 Q1 FOOD SCIENCE & TECHNOLOGY
Fernando Aramburu-Merlos, Marloes P. van Loon, Martin K. van Ittersum, Patricio Grassini
{"title":"高分辨率全球产量潜力图,与地方相关,用于有针对性地改进作物生产","authors":"Fernando Aramburu-Merlos, Marloes P. van Loon, Martin K. van Ittersum, Patricio Grassini","doi":"10.1038/s43016-024-01029-3","DOIUrl":null,"url":null,"abstract":"Identifying untapped opportunities for crop production improvement in current cropland is crucial to guide food availability interventions. Here we integrated an agronomically robust bottom-up approach with machine learning to generate global maps of yield potential of high resolution (ca. 1 km2 at the Equator) and accuracy for maize, wheat and rice. These maps serve as a robust reference to benchmark farmers’ yields in the context of current cropping systems and water regimes and can help to identify areas with large room to increase crop yields. High-resolution global maps of yield potential were created through crop modelling and machine learning. These maps can help orient agricultural research and development programmes and assess food security and land use from local to regional levels.","PeriodicalId":94151,"journal":{"name":"Nature food","volume":"5 8","pages":"667-672"},"PeriodicalIF":23.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution global maps of yield potential with local relevance for targeted crop production improvement\",\"authors\":\"Fernando Aramburu-Merlos, Marloes P. van Loon, Martin K. van Ittersum, Patricio Grassini\",\"doi\":\"10.1038/s43016-024-01029-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying untapped opportunities for crop production improvement in current cropland is crucial to guide food availability interventions. Here we integrated an agronomically robust bottom-up approach with machine learning to generate global maps of yield potential of high resolution (ca. 1 km2 at the Equator) and accuracy for maize, wheat and rice. These maps serve as a robust reference to benchmark farmers’ yields in the context of current cropping systems and water regimes and can help to identify areas with large room to increase crop yields. High-resolution global maps of yield potential were created through crop modelling and machine learning. These maps can help orient agricultural research and development programmes and assess food security and land use from local to regional levels.\",\"PeriodicalId\":94151,\"journal\":{\"name\":\"Nature food\",\"volume\":\"5 8\",\"pages\":\"667-672\"},\"PeriodicalIF\":23.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43016-024-01029-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43016-024-01029-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

确定当前耕地中尚未开发的作物增产机会对于指导粮食供应干预措施至关重要。在此,我们将农学上稳健的自下而上方法与机器学习相结合,生成了高分辨率(赤道地区约 1 平方公里)、高精度的全球玉米、小麦和水稻产量潜力图。这些地图可作为当前耕作制度和水制度背景下农民产量基准的可靠参考,并有助于确定作物产量有较大提高空间的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-resolution global maps of yield potential with local relevance for targeted crop production improvement

High-resolution global maps of yield potential with local relevance for targeted crop production improvement

High-resolution global maps of yield potential with local relevance for targeted crop production improvement
Identifying untapped opportunities for crop production improvement in current cropland is crucial to guide food availability interventions. Here we integrated an agronomically robust bottom-up approach with machine learning to generate global maps of yield potential of high resolution (ca. 1 km2 at the Equator) and accuracy for maize, wheat and rice. These maps serve as a robust reference to benchmark farmers’ yields in the context of current cropping systems and water regimes and can help to identify areas with large room to increase crop yields. High-resolution global maps of yield potential were created through crop modelling and machine learning. These maps can help orient agricultural research and development programmes and assess food security and land use from local to regional levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信