{"title":"动态满足服务网格性能目标的框架","authors":"Forough Shahab Samani;Rolf Stadler","doi":"10.1109/TNSM.2024.3434328","DOIUrl":null,"url":null,"abstract":"We present a framework for achieving end-to-end management objectives for multiple services that concurrently execute on a service mesh. We apply reinforcement learning (RL) techniques to train an agent that periodically performs control actions to reallocate resources. We develop and evaluate the framework using a laboratory testbed where we run information and computing services on a service mesh, supported by the Istio and Kubernetes platforms. We investigate different management objectives that include end-to-end delay bounds on service requests, throughput objectives, cost-related objectives, and service differentiation. Our framework supports the design of a control agent for a given management objective. The management objective is defined first and then mapped onto available control actions. Several types of control actions can be executed simultaneously, which allows for efficient resource utilization. Second, the framework separates the learning of the system model and the operating region from the learning of the control policy. By first learning the system model and the operating region from testbed traces, we can instantiate a simulator and train the agent for different management objectives. Third, the use of a simulator shortens the training time by orders of magnitude compared with training the agent on the testbed. We evaluate the learned policies on the testbed and show the effectiveness of our approach in several scenarios. In one scenario, we design a controller that achieves the management objectives with 50% less system resources than Kubernetes HPA autoscaling.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"5992-6007"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612769","citationCount":"0","resultStr":"{\"title\":\"A Framework for Dynamically Meeting Performance Objectives on a Service Mesh\",\"authors\":\"Forough Shahab Samani;Rolf Stadler\",\"doi\":\"10.1109/TNSM.2024.3434328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework for achieving end-to-end management objectives for multiple services that concurrently execute on a service mesh. We apply reinforcement learning (RL) techniques to train an agent that periodically performs control actions to reallocate resources. We develop and evaluate the framework using a laboratory testbed where we run information and computing services on a service mesh, supported by the Istio and Kubernetes platforms. We investigate different management objectives that include end-to-end delay bounds on service requests, throughput objectives, cost-related objectives, and service differentiation. Our framework supports the design of a control agent for a given management objective. The management objective is defined first and then mapped onto available control actions. Several types of control actions can be executed simultaneously, which allows for efficient resource utilization. Second, the framework separates the learning of the system model and the operating region from the learning of the control policy. By first learning the system model and the operating region from testbed traces, we can instantiate a simulator and train the agent for different management objectives. Third, the use of a simulator shortens the training time by orders of magnitude compared with training the agent on the testbed. We evaluate the learned policies on the testbed and show the effectiveness of our approach in several scenarios. In one scenario, we design a controller that achieves the management objectives with 50% less system resources than Kubernetes HPA autoscaling.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"5992-6007\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612769\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10612769/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10612769/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Framework for Dynamically Meeting Performance Objectives on a Service Mesh
We present a framework for achieving end-to-end management objectives for multiple services that concurrently execute on a service mesh. We apply reinforcement learning (RL) techniques to train an agent that periodically performs control actions to reallocate resources. We develop and evaluate the framework using a laboratory testbed where we run information and computing services on a service mesh, supported by the Istio and Kubernetes platforms. We investigate different management objectives that include end-to-end delay bounds on service requests, throughput objectives, cost-related objectives, and service differentiation. Our framework supports the design of a control agent for a given management objective. The management objective is defined first and then mapped onto available control actions. Several types of control actions can be executed simultaneously, which allows for efficient resource utilization. Second, the framework separates the learning of the system model and the operating region from the learning of the control policy. By first learning the system model and the operating region from testbed traces, we can instantiate a simulator and train the agent for different management objectives. Third, the use of a simulator shortens the training time by orders of magnitude compared with training the agent on the testbed. We evaluate the learned policies on the testbed and show the effectiveness of our approach in several scenarios. In one scenario, we design a controller that achieves the management objectives with 50% less system resources than Kubernetes HPA autoscaling.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.