Ziting Yao, Abdullah Khan, Yuzhi Xu, Kaiyuan Pan, Muqing Zhang
{"title":"与甘蔗和香蕉轮作系统相关的根瘤细菌群落分析","authors":"Ziting Yao, Abdullah Khan, Yuzhi Xu, Kaiyuan Pan, Muqing Zhang","doi":"10.1186/s40538-024-00616-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Guangxi is the leading sugarcane-producing area in China. Due to the Panama disease outbreak in banana gardens, sugarcane and banana rotation was recommended. A field experiment with the newly released sugarcane cultivar Zhongzhe 1 (ZZ1) was conducted to understand the role of the sugarcane–banana rotation system in shaping the rhizosphere microbiota. Fields in the region possess characteristics of red laterite soil.</p><h3>Results</h3><p>Using Illumina HiSeq sequencing to analyze soil samples’ 16S rRNA V3-V4 region, the preceding banana rotation field had relatively greater bacterial diversity than the monoculture sugarcane field. <i>Proteobacteria</i>, <i>Chloroflexi</i>, <i>Actinobacteria</i>, and <i>Acidobacteria</i> were the dominant phyla, with distinct taxa enriched in each environment. However, the preceding sugarcane monoculture field enriched functional groups related to nitrogen fixation and cellulolysis. Network analysis highlighted contrasting network structures between sugarcane and banana rhizospheres, suggesting differential stability and susceptibility to environmental influences. Furthermore, correlations between soil properties and bacterial alpha-diversity underscored the influence of preceding crops on rhizosphere microbial communities.</p><h3>Conclusion</h3><p>This research enhances our understanding of crop rotation effects on soil microbial ecology and provides insights into optimizing agricultural practices for enhanced soil health and crop productivity. Future studies should explore the underlying mechanisms driving these interactions and evaluate the long-term impacts of crop rotation on soil microbial dynamics.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00616-7","citationCount":"0","resultStr":"{\"title\":\"Profiling of rhizosphere bacterial community associated with sugarcane and banana rotation system\",\"authors\":\"Ziting Yao, Abdullah Khan, Yuzhi Xu, Kaiyuan Pan, Muqing Zhang\",\"doi\":\"10.1186/s40538-024-00616-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Guangxi is the leading sugarcane-producing area in China. Due to the Panama disease outbreak in banana gardens, sugarcane and banana rotation was recommended. A field experiment with the newly released sugarcane cultivar Zhongzhe 1 (ZZ1) was conducted to understand the role of the sugarcane–banana rotation system in shaping the rhizosphere microbiota. Fields in the region possess characteristics of red laterite soil.</p><h3>Results</h3><p>Using Illumina HiSeq sequencing to analyze soil samples’ 16S rRNA V3-V4 region, the preceding banana rotation field had relatively greater bacterial diversity than the monoculture sugarcane field. <i>Proteobacteria</i>, <i>Chloroflexi</i>, <i>Actinobacteria</i>, and <i>Acidobacteria</i> were the dominant phyla, with distinct taxa enriched in each environment. However, the preceding sugarcane monoculture field enriched functional groups related to nitrogen fixation and cellulolysis. Network analysis highlighted contrasting network structures between sugarcane and banana rhizospheres, suggesting differential stability and susceptibility to environmental influences. Furthermore, correlations between soil properties and bacterial alpha-diversity underscored the influence of preceding crops on rhizosphere microbial communities.</p><h3>Conclusion</h3><p>This research enhances our understanding of crop rotation effects on soil microbial ecology and provides insights into optimizing agricultural practices for enhanced soil health and crop productivity. Future studies should explore the underlying mechanisms driving these interactions and evaluate the long-term impacts of crop rotation on soil microbial dynamics.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00616-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00616-7\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00616-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Profiling of rhizosphere bacterial community associated with sugarcane and banana rotation system
Background
Guangxi is the leading sugarcane-producing area in China. Due to the Panama disease outbreak in banana gardens, sugarcane and banana rotation was recommended. A field experiment with the newly released sugarcane cultivar Zhongzhe 1 (ZZ1) was conducted to understand the role of the sugarcane–banana rotation system in shaping the rhizosphere microbiota. Fields in the region possess characteristics of red laterite soil.
Results
Using Illumina HiSeq sequencing to analyze soil samples’ 16S rRNA V3-V4 region, the preceding banana rotation field had relatively greater bacterial diversity than the monoculture sugarcane field. Proteobacteria, Chloroflexi, Actinobacteria, and Acidobacteria were the dominant phyla, with distinct taxa enriched in each environment. However, the preceding sugarcane monoculture field enriched functional groups related to nitrogen fixation and cellulolysis. Network analysis highlighted contrasting network structures between sugarcane and banana rhizospheres, suggesting differential stability and susceptibility to environmental influences. Furthermore, correlations between soil properties and bacterial alpha-diversity underscored the influence of preceding crops on rhizosphere microbial communities.
Conclusion
This research enhances our understanding of crop rotation effects on soil microbial ecology and provides insights into optimizing agricultural practices for enhanced soil health and crop productivity. Future studies should explore the underlying mechanisms driving these interactions and evaluate the long-term impacts of crop rotation on soil microbial dynamics.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.