Ruijie Zhang , Xin Zheng , Lu Zhang , Yan Xu , Xinao Lin , Xuefeng Wang , Chuyan Wu , Feng Jiang , Jimei Wang
{"title":"LANMAO 睡眠记录仪与多导睡眠监测仪在新生儿脑电图记录和睡眠分析中的对比。","authors":"Ruijie Zhang , Xin Zheng , Lu Zhang , Yan Xu , Xinao Lin , Xuefeng Wang , Chuyan Wu , Feng Jiang , Jimei Wang","doi":"10.1016/j.jneumeth.2024.110222","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The field of neonatal sleep analysis is burgeoning with devices that purport to offer alternatives to polysomnography (PSG) for monitoring sleep patterns. However, the majority of these devices are limited in their capacity, typically only distinguishing between sleep and wakefulness. This study aims to assess the efficacy of a novel wearable electroencephalographic (EEG) device, the LANMAO Sleep Recorder, in capturing EEG data and analyzing sleep stages, and to compare its performance against the established PSG standard.</p></div><div><h3>Methods</h3><p>The study involved concurrent sleep monitoring of 34 neonates using both PSG and the LANMAO device. Initially, the study verified the consistency of raw EEG signals captured by the LANMAO device, employing relative spectral power analysis and Pearson correlation coefficients (PCC) for validation. Subsequently, the LANMAO device’s integrated automated sleep staging algorithm was evaluated by comparing its output with expert-generated sleep stage classifications.</p></div><div><h3>Results</h3><p>Analysis revealed that the PCC between the relative spectral powers of various frequency bands during different sleep stages ranged from 0.28 to 0.48. Specifically, the correlation for delta waves was recorded at 0.28. The automated sleep staging algorithm of the LANMAO device demonstrated an overall accuracy of 79.60 %, Cohen kappa of 0.65, and F1 Score of 76.93 %. Individual accuracy for Wake at 87.20 %, NREM at 85.70 %, and REM Sleep at 81.30 %.</p></div><div><h3>Conclusion</h3><p>While the LANMAO Sleep Recorder’s automated sleep staging algorithm necessitates further refinement, the device shows promise in accurately recording neonatal EEG during sleep. Its potential for minimal invasiveness makes it an appealing option for monitoring sleep conditions in newborns, suggesting a novel approach in the field of neonatal sleep analysis.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"410 ","pages":"Article 110222"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LANMAO sleep recorder versus polysomnography in neonatal EEG recording and sleep analysis\",\"authors\":\"Ruijie Zhang , Xin Zheng , Lu Zhang , Yan Xu , Xinao Lin , Xuefeng Wang , Chuyan Wu , Feng Jiang , Jimei Wang\",\"doi\":\"10.1016/j.jneumeth.2024.110222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The field of neonatal sleep analysis is burgeoning with devices that purport to offer alternatives to polysomnography (PSG) for monitoring sleep patterns. However, the majority of these devices are limited in their capacity, typically only distinguishing between sleep and wakefulness. This study aims to assess the efficacy of a novel wearable electroencephalographic (EEG) device, the LANMAO Sleep Recorder, in capturing EEG data and analyzing sleep stages, and to compare its performance against the established PSG standard.</p></div><div><h3>Methods</h3><p>The study involved concurrent sleep monitoring of 34 neonates using both PSG and the LANMAO device. Initially, the study verified the consistency of raw EEG signals captured by the LANMAO device, employing relative spectral power analysis and Pearson correlation coefficients (PCC) for validation. Subsequently, the LANMAO device’s integrated automated sleep staging algorithm was evaluated by comparing its output with expert-generated sleep stage classifications.</p></div><div><h3>Results</h3><p>Analysis revealed that the PCC between the relative spectral powers of various frequency bands during different sleep stages ranged from 0.28 to 0.48. Specifically, the correlation for delta waves was recorded at 0.28. The automated sleep staging algorithm of the LANMAO device demonstrated an overall accuracy of 79.60 %, Cohen kappa of 0.65, and F1 Score of 76.93 %. Individual accuracy for Wake at 87.20 %, NREM at 85.70 %, and REM Sleep at 81.30 %.</p></div><div><h3>Conclusion</h3><p>While the LANMAO Sleep Recorder’s automated sleep staging algorithm necessitates further refinement, the device shows promise in accurately recording neonatal EEG during sleep. Its potential for minimal invasiveness makes it an appealing option for monitoring sleep conditions in newborns, suggesting a novel approach in the field of neonatal sleep analysis.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"410 \",\"pages\":\"Article 110222\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024001675\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001675","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
LANMAO sleep recorder versus polysomnography in neonatal EEG recording and sleep analysis
Background
The field of neonatal sleep analysis is burgeoning with devices that purport to offer alternatives to polysomnography (PSG) for monitoring sleep patterns. However, the majority of these devices are limited in their capacity, typically only distinguishing between sleep and wakefulness. This study aims to assess the efficacy of a novel wearable electroencephalographic (EEG) device, the LANMAO Sleep Recorder, in capturing EEG data and analyzing sleep stages, and to compare its performance against the established PSG standard.
Methods
The study involved concurrent sleep monitoring of 34 neonates using both PSG and the LANMAO device. Initially, the study verified the consistency of raw EEG signals captured by the LANMAO device, employing relative spectral power analysis and Pearson correlation coefficients (PCC) for validation. Subsequently, the LANMAO device’s integrated automated sleep staging algorithm was evaluated by comparing its output with expert-generated sleep stage classifications.
Results
Analysis revealed that the PCC between the relative spectral powers of various frequency bands during different sleep stages ranged from 0.28 to 0.48. Specifically, the correlation for delta waves was recorded at 0.28. The automated sleep staging algorithm of the LANMAO device demonstrated an overall accuracy of 79.60 %, Cohen kappa of 0.65, and F1 Score of 76.93 %. Individual accuracy for Wake at 87.20 %, NREM at 85.70 %, and REM Sleep at 81.30 %.
Conclusion
While the LANMAO Sleep Recorder’s automated sleep staging algorithm necessitates further refinement, the device shows promise in accurately recording neonatal EEG during sleep. Its potential for minimal invasiveness makes it an appealing option for monitoring sleep conditions in newborns, suggesting a novel approach in the field of neonatal sleep analysis.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.