黄肉球菌中五种硫氧还蛋白和一种硫氧还蛋白还原酶的酶学特征。

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Ryota Tanifuji, Yoshio Kimura
{"title":"黄肉球菌中五种硫氧还蛋白和一种硫氧还蛋白还原酶的酶学特征。","authors":"Ryota Tanifuji, Yoshio Kimura","doi":"10.1093/femsle/fnae058","DOIUrl":null,"url":null,"abstract":"<p><p>Thioredoxin (Trx) is a disulfide-containing redox protein that functions as a disulfide oxidoreductase. Myxococcus xanthus contains five Trxs (Trx1-Trx5) and one Trx reductase (TrxR). Trxs typically have a CGPC active-site motif; however, M. xanthus Trxs have slightly different active-site sequences, with the exception of Trx4. The five Trxs of M. xanthus exhibited reduced activities against insulin, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), cystine, glutathione disulfide (GSSG), S-nitrosoglutathione (GSNO), and H2O2 in the presence of TrxR. Myxococcus xanthus adenylate kinase and serine/threonine phosphatase activities, which were increased by the addition of dithiothreitol, were activated by the addition of Trxs and TrxR. Among these, Trx1, which has a CAPC sequence in its active site, exhibited the highest reducing activity with the exception of GSNO. Myxococcus xanthus TrxR showed weak reducing activity towards DTNB, GSSG, GSNO, and H2O2, suggesting that it has broad substrate specificity, unlike previously reported low-molecular-weight TrxRs. TrxR reduced oxidized Trx1 as the best substrate, with a kcat/Km value of 0.253 min-1 µM-1, which was 10-28-fold higher than that of the other Trxs. These results suggest that all Trxs possess reducing activity and that Trx1 may be the most functional in M. xanthus because TrxR most efficiently reduces oxidized Trx1.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatic characterization of five thioredoxins and a thioredoxin reductase from Myxococcus xanthus.\",\"authors\":\"Ryota Tanifuji, Yoshio Kimura\",\"doi\":\"10.1093/femsle/fnae058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thioredoxin (Trx) is a disulfide-containing redox protein that functions as a disulfide oxidoreductase. Myxococcus xanthus contains five Trxs (Trx1-Trx5) and one Trx reductase (TrxR). Trxs typically have a CGPC active-site motif; however, M. xanthus Trxs have slightly different active-site sequences, with the exception of Trx4. The five Trxs of M. xanthus exhibited reduced activities against insulin, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), cystine, glutathione disulfide (GSSG), S-nitrosoglutathione (GSNO), and H2O2 in the presence of TrxR. Myxococcus xanthus adenylate kinase and serine/threonine phosphatase activities, which were increased by the addition of dithiothreitol, were activated by the addition of Trxs and TrxR. Among these, Trx1, which has a CAPC sequence in its active site, exhibited the highest reducing activity with the exception of GSNO. Myxococcus xanthus TrxR showed weak reducing activity towards DTNB, GSSG, GSNO, and H2O2, suggesting that it has broad substrate specificity, unlike previously reported low-molecular-weight TrxRs. TrxR reduced oxidized Trx1 as the best substrate, with a kcat/Km value of 0.253 min-1 µM-1, which was 10-28-fold higher than that of the other Trxs. These results suggest that all Trxs possess reducing activity and that Trx1 may be the most functional in M. xanthus because TrxR most efficiently reduces oxidized Trx1.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae058\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

硫氧还原蛋白(Trx)是一种含二硫化物的氧化还原蛋白,具有二硫氧化还原酶的功能。黄肉球菌含有五个 Trx(Trx1-Trx5)和一个 Trx 还原酶(TrxR)。Trxs 通常具有 CGPC 活性位点基序;然而,除 Trx4 外,黄绿霉菌 Trxs 的活性位点序列略有不同。在 TrxR 存在的情况下,黄绿霉菌的五种 Trxs 对胰岛素、5,5'-二硫双(2-硝基苯甲酸)(DTNB)、胱氨酸、谷胱甘肽二硫化物(GSSG)、S-亚硝基谷胱甘肽(GSNO)和 H2O2 的活性均有所降低。加入二硫苏糖醇后,黄皮蝇腺苷酸激酶和丝氨酸/苏氨酸磷酸酶的活性提高,而加入 Trxs 和 TrxR 后,它们的活性被激活。其中,Trx1 的活性位点具有 CAPC 序列,除 GSNO 外,其还原活性最高。M. xanthus的TrxR对DTNB、GSSG、GSNO和H2O2的还原活性较弱,这表明它具有广泛的底物特异性,与之前报道的低分子量TrxR不同。TrxR 还原氧化的 Trx1 为最佳底物,其 kcat/Km 值为 0.253 min-1 μM-1,是其他 Trxs 的 10-28 倍。这些结果表明,所有 Trxs 都具有还原活性,而 Trx1 可能是黄腐菌中功能最强的,因为 TrxR 能最有效地还原氧化的 Trx1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enzymatic characterization of five thioredoxins and a thioredoxin reductase from Myxococcus xanthus.

Thioredoxin (Trx) is a disulfide-containing redox protein that functions as a disulfide oxidoreductase. Myxococcus xanthus contains five Trxs (Trx1-Trx5) and one Trx reductase (TrxR). Trxs typically have a CGPC active-site motif; however, M. xanthus Trxs have slightly different active-site sequences, with the exception of Trx4. The five Trxs of M. xanthus exhibited reduced activities against insulin, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), cystine, glutathione disulfide (GSSG), S-nitrosoglutathione (GSNO), and H2O2 in the presence of TrxR. Myxococcus xanthus adenylate kinase and serine/threonine phosphatase activities, which were increased by the addition of dithiothreitol, were activated by the addition of Trxs and TrxR. Among these, Trx1, which has a CAPC sequence in its active site, exhibited the highest reducing activity with the exception of GSNO. Myxococcus xanthus TrxR showed weak reducing activity towards DTNB, GSSG, GSNO, and H2O2, suggesting that it has broad substrate specificity, unlike previously reported low-molecular-weight TrxRs. TrxR reduced oxidized Trx1 as the best substrate, with a kcat/Km value of 0.253 min-1 µM-1, which was 10-28-fold higher than that of the other Trxs. These results suggest that all Trxs possess reducing activity and that Trx1 may be the most functional in M. xanthus because TrxR most efficiently reduces oxidized Trx1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信