Horea-Ioan Ioanas, Austin Macdonald, Yaroslav O. Halchenko
{"title":"神经影像学前沿》文章重发与转载评估系统","authors":"Horea-Ioan Ioanas, Austin Macdonald, Yaroslav O. Halchenko","doi":"10.3389/fninf.2024.1376022","DOIUrl":null,"url":null,"abstract":"The value of research articles is increasingly contingent on complex data analysis results which substantiate their claims. Compared to data production, data analysis more readily lends itself to a higher standard of transparency and repeated operator-independent execution. This higher standard can be approached via fully reexecutable research outputs, which contain the entire instruction set for automatic end-to-end generation of an entire article from the earliest feasible provenance point. In this study, we make use of a peer-reviewed neuroimaging article which provides complete but fragile reexecution instructions, as a starting point to draft a new reexecution system which is both robust and portable. We render this system modular as a core design aspect, so that reexecutable article code, data, and environment specifications could potentially be substituted or adapted. In conjunction with this system, which forms the demonstrative product of this study, we detail the core challenges with full article reexecution and specify a number of best practices which permitted us to mitigate them. We further show how the capabilities of our system can subsequently be used to provide reproducibility assessments, both via simple statistical metrics and by visually highlighting divergent elements for human inspection. We argue that fully reexecutable articles are thus a feasible best practice, which can greatly enhance the understanding of data analysis variability and the trust in results. Lastly, we comment at length on the outlook for reexecutable research outputs and encourage re-use and derivation of the system produced herein.","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"62 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontiers | Neuroimaging article reexecution and reproduction assessment system\",\"authors\":\"Horea-Ioan Ioanas, Austin Macdonald, Yaroslav O. Halchenko\",\"doi\":\"10.3389/fninf.2024.1376022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The value of research articles is increasingly contingent on complex data analysis results which substantiate their claims. Compared to data production, data analysis more readily lends itself to a higher standard of transparency and repeated operator-independent execution. This higher standard can be approached via fully reexecutable research outputs, which contain the entire instruction set for automatic end-to-end generation of an entire article from the earliest feasible provenance point. In this study, we make use of a peer-reviewed neuroimaging article which provides complete but fragile reexecution instructions, as a starting point to draft a new reexecution system which is both robust and portable. We render this system modular as a core design aspect, so that reexecutable article code, data, and environment specifications could potentially be substituted or adapted. In conjunction with this system, which forms the demonstrative product of this study, we detail the core challenges with full article reexecution and specify a number of best practices which permitted us to mitigate them. We further show how the capabilities of our system can subsequently be used to provide reproducibility assessments, both via simple statistical metrics and by visually highlighting divergent elements for human inspection. We argue that fully reexecutable articles are thus a feasible best practice, which can greatly enhance the understanding of data analysis variability and the trust in results. Lastly, we comment at length on the outlook for reexecutable research outputs and encourage re-use and derivation of the system produced herein.\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2024.1376022\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1376022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Frontiers | Neuroimaging article reexecution and reproduction assessment system
The value of research articles is increasingly contingent on complex data analysis results which substantiate their claims. Compared to data production, data analysis more readily lends itself to a higher standard of transparency and repeated operator-independent execution. This higher standard can be approached via fully reexecutable research outputs, which contain the entire instruction set for automatic end-to-end generation of an entire article from the earliest feasible provenance point. In this study, we make use of a peer-reviewed neuroimaging article which provides complete but fragile reexecution instructions, as a starting point to draft a new reexecution system which is both robust and portable. We render this system modular as a core design aspect, so that reexecutable article code, data, and environment specifications could potentially be substituted or adapted. In conjunction with this system, which forms the demonstrative product of this study, we detail the core challenges with full article reexecution and specify a number of best practices which permitted us to mitigate them. We further show how the capabilities of our system can subsequently be used to provide reproducibility assessments, both via simple statistical metrics and by visually highlighting divergent elements for human inspection. We argue that fully reexecutable articles are thus a feasible best practice, which can greatly enhance the understanding of data analysis variability and the trust in results. Lastly, we comment at length on the outlook for reexecutable research outputs and encourage re-use and derivation of the system produced herein.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.