论具有双鞍点结构的矩阵的可逆性

IF 1 3区 数学 Q1 MATHEMATICS
Fatemeh P.A. Beik , Chen Greif , Manfred Trummer
{"title":"论具有双鞍点结构的矩阵的可逆性","authors":"Fatemeh P.A. Beik ,&nbsp;Chen Greif ,&nbsp;Manfred Trummer","doi":"10.1016/j.laa.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>We establish necessary and sufficient conditions for invertibility of symmetric three-by-three block matrices having a double saddle-point structure that guarantee the unique solvability of double saddle-point systems. We consider various scenarios, including the case where all diagonal blocks are allowed to be rank deficient. Under certain conditions related to the nullity of the blocks and intersections of their kernels, an explicit formula for the inverse is derived.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524002957/pdfft?md5=2f9745e86feef3ccac116a6ac9360448&pid=1-s2.0-S0024379524002957-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the invertibility of matrices with a double saddle-point structure\",\"authors\":\"Fatemeh P.A. Beik ,&nbsp;Chen Greif ,&nbsp;Manfred Trummer\",\"doi\":\"10.1016/j.laa.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish necessary and sufficient conditions for invertibility of symmetric three-by-three block matrices having a double saddle-point structure that guarantee the unique solvability of double saddle-point systems. We consider various scenarios, including the case where all diagonal blocks are allowed to be rank deficient. Under certain conditions related to the nullity of the blocks and intersections of their kernels, an explicit formula for the inverse is derived.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002957/pdfft?md5=2f9745e86feef3ccac116a6ac9360448&pid=1-s2.0-S0024379524002957-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002957\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002957","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为具有双鞍点结构的对称三乘三块矩阵的可逆性建立了必要和充分条件,从而保证了双鞍点系统的唯一可解性。我们考虑了各种情况,包括允许所有对角块都是秩缺陷的情况。在与块的无效性及其核的交集相关的某些条件下,我们得出了一个明确的逆公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the invertibility of matrices with a double saddle-point structure

We establish necessary and sufficient conditions for invertibility of symmetric three-by-three block matrices having a double saddle-point structure that guarantee the unique solvability of double saddle-point systems. We consider various scenarios, including the case where all diagonal blocks are allowed to be rank deficient. Under certain conditions related to the nullity of the blocks and intersections of their kernels, an explicit formula for the inverse is derived.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信