{"title":"工程教育中基于挑战的能力培养学习--基于棱镜的系统文献综述","authors":"Andreia Leles;Luciana Zaina;José Roberto Cardoso","doi":"10.1109/TE.2024.3417908","DOIUrl":null,"url":null,"abstract":"The teaching-learning process in engineering aims to meet current societal demands and address real challenges faced by businesses and the job market. Challenge-based learning (CBL) has gained traction as an active and innovative approach in engineering education, introducing real challenges and open questions to the classroom regarding environmental sustainability and issues faced by Industry 4.0. These challenges require resources and technology that turn the teaching-learning process into an open system, demanding partnerships beyond academia for validating deliverables and projects. Following the PRISMA 2020 guidelines, this study aimed to systematically analyze the implementation and implications of CBL for competencies development. Following the inclusion and exclusion criteria of the PRISMA method, 62 articles were used for abstract analyses to identify methods, workload, resources, structure, technology, and stakeholder integration, as well as to answer the research questions. The studies were categorized into three types of applied challenges: 1) social and environmental sustainability; 2) Industry 4.0; and 3) those related to Educational Institutions. A total of 46 articles were analyzed in their entirety, and summarized in three tables. All analyzed studies showed that CBL is effective according to summative and formative assessments, leading to sociotechnical competencies development through experience with real-world challenges, teamwork, and interaction with external partners. As most studies are qualitative, there is room for quantitative investigations to better justify the relevance of CBL, especially in terms of adaptive and personalized learning. Moreover, the workload and complexity imposed by CBL, particularly on teachers, warrant further study to facilitate implementation and engagement.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10600095","citationCount":"0","resultStr":"{\"title\":\"Challenge-Based Learning for Competency Development in Engineering Education, a Prisma-Based Systematic Literature Review\",\"authors\":\"Andreia Leles;Luciana Zaina;José Roberto Cardoso\",\"doi\":\"10.1109/TE.2024.3417908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The teaching-learning process in engineering aims to meet current societal demands and address real challenges faced by businesses and the job market. Challenge-based learning (CBL) has gained traction as an active and innovative approach in engineering education, introducing real challenges and open questions to the classroom regarding environmental sustainability and issues faced by Industry 4.0. These challenges require resources and technology that turn the teaching-learning process into an open system, demanding partnerships beyond academia for validating deliverables and projects. Following the PRISMA 2020 guidelines, this study aimed to systematically analyze the implementation and implications of CBL for competencies development. Following the inclusion and exclusion criteria of the PRISMA method, 62 articles were used for abstract analyses to identify methods, workload, resources, structure, technology, and stakeholder integration, as well as to answer the research questions. The studies were categorized into three types of applied challenges: 1) social and environmental sustainability; 2) Industry 4.0; and 3) those related to Educational Institutions. A total of 46 articles were analyzed in their entirety, and summarized in three tables. All analyzed studies showed that CBL is effective according to summative and formative assessments, leading to sociotechnical competencies development through experience with real-world challenges, teamwork, and interaction with external partners. As most studies are qualitative, there is room for quantitative investigations to better justify the relevance of CBL, especially in terms of adaptive and personalized learning. Moreover, the workload and complexity imposed by CBL, particularly on teachers, warrant further study to facilitate implementation and engagement.\",\"PeriodicalId\":55011,\"journal\":{\"name\":\"IEEE Transactions on Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10600095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10600095/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Education","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10600095/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Challenge-Based Learning for Competency Development in Engineering Education, a Prisma-Based Systematic Literature Review
The teaching-learning process in engineering aims to meet current societal demands and address real challenges faced by businesses and the job market. Challenge-based learning (CBL) has gained traction as an active and innovative approach in engineering education, introducing real challenges and open questions to the classroom regarding environmental sustainability and issues faced by Industry 4.0. These challenges require resources and technology that turn the teaching-learning process into an open system, demanding partnerships beyond academia for validating deliverables and projects. Following the PRISMA 2020 guidelines, this study aimed to systematically analyze the implementation and implications of CBL for competencies development. Following the inclusion and exclusion criteria of the PRISMA method, 62 articles were used for abstract analyses to identify methods, workload, resources, structure, technology, and stakeholder integration, as well as to answer the research questions. The studies were categorized into three types of applied challenges: 1) social and environmental sustainability; 2) Industry 4.0; and 3) those related to Educational Institutions. A total of 46 articles were analyzed in their entirety, and summarized in three tables. All analyzed studies showed that CBL is effective according to summative and formative assessments, leading to sociotechnical competencies development through experience with real-world challenges, teamwork, and interaction with external partners. As most studies are qualitative, there is room for quantitative investigations to better justify the relevance of CBL, especially in terms of adaptive and personalized learning. Moreover, the workload and complexity imposed by CBL, particularly on teachers, warrant further study to facilitate implementation and engagement.
期刊介绍:
The IEEE Transactions on Education (ToE) publishes significant and original scholarly contributions to education in electrical and electronics engineering, computer engineering, computer science, and other fields within the scope of interest of IEEE. Contributions must address discovery, integration, and/or application of knowledge in education in these fields. Articles must support contributions and assertions with compelling evidence and provide explicit, transparent descriptions of the processes through which the evidence is collected, analyzed, and interpreted. While characteristics of compelling evidence cannot be described to address every conceivable situation, generally assessment of the work being reported must go beyond student self-report and attitudinal data.