由图对决定的结构矩阵的逆特征值问题

IF 1 3区 数学 Q1 MATHEMATICS
A.H. Berliner , M. Catral , M. Cavers , S. Kim , P. van den Driessche
{"title":"由图对决定的结构矩阵的逆特征值问题","authors":"A.H. Berliner ,&nbsp;M. Catral ,&nbsp;M. Cavers ,&nbsp;S. Kim ,&nbsp;P. van den Driessche","doi":"10.1016/j.laa.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Given a pair of real symmetric matrices <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span> with nonzero patterns determined by the edges of any pair of chosen graphs on <em>n</em> vertices, we consider an inverse eigenvalue problem for the structured matrix <span><math><mi>C</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mspace></mspace><mi>A</mi><mspace></mspace></mtd><mtd><mi>B</mi></mtd></mtr><mtr><mtd><mspace></mspace><mi>I</mi><mspace></mspace></mtd><mtd><mi>O</mi></mtd></mtr></mtable><mo>]</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></mrow></msup></math></span>. We conjecture that <em>C</em> can attain any spectrum that is closed under conjugation. We use a structured Jacobian method to prove this conjecture for <em>A</em> and <em>B</em> of orders at most 4 or when the graph of <em>A</em> has a Hamilton path, and prove a weaker version of this conjecture for any pair of graphs with a restriction on the multiplicities of eigenvalues of <em>C</em>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524002970/pdfft?md5=fa415a9b3c87c51014076976d43924d1&pid=1-s2.0-S0024379524002970-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An inverse eigenvalue problem for structured matrices determined by graph pairs\",\"authors\":\"A.H. Berliner ,&nbsp;M. Catral ,&nbsp;M. Cavers ,&nbsp;S. Kim ,&nbsp;P. van den Driessche\",\"doi\":\"10.1016/j.laa.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a pair of real symmetric matrices <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span> with nonzero patterns determined by the edges of any pair of chosen graphs on <em>n</em> vertices, we consider an inverse eigenvalue problem for the structured matrix <span><math><mi>C</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mspace></mspace><mi>A</mi><mspace></mspace></mtd><mtd><mi>B</mi></mtd></mtr><mtr><mtd><mspace></mspace><mi>I</mi><mspace></mspace></mtd><mtd><mi>O</mi></mtd></mtr></mtable><mo>]</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></mrow></msup></math></span>. We conjecture that <em>C</em> can attain any spectrum that is closed under conjugation. We use a structured Jacobian method to prove this conjecture for <em>A</em> and <em>B</em> of orders at most 4 or when the graph of <em>A</em> has a Hamilton path, and prove a weaker version of this conjecture for any pair of graphs with a restriction on the multiplicities of eigenvalues of <em>C</em>.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002970/pdfft?md5=fa415a9b3c87c51014076976d43924d1&pid=1-s2.0-S0024379524002970-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002970\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002970","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一对实对称矩阵 A,B∈Rn×n,其非零图案由 n 个顶点上任意一对所选图形的边决定,我们考虑结构矩阵 C=[ABIO]∈R2n×2n的逆特征值问题。我们猜想,C 可以达到任何在共轭作用下封闭的谱。我们使用结构雅各布方法证明了阶最多为 4 或当 A 的图有一条汉密尔顿路径时的 A 和 B 的这一猜想,并证明了对 C 的特征值乘数有限制的任何一对图的这一猜想的较弱版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An inverse eigenvalue problem for structured matrices determined by graph pairs

Given a pair of real symmetric matrices A,BRn×n with nonzero patterns determined by the edges of any pair of chosen graphs on n vertices, we consider an inverse eigenvalue problem for the structured matrix C=[ABIO]R2n×2n. We conjecture that C can attain any spectrum that is closed under conjugation. We use a structured Jacobian method to prove this conjecture for A and B of orders at most 4 or when the graph of A has a Hamilton path, and prove a weaker version of this conjecture for any pair of graphs with a restriction on the multiplicities of eigenvalues of C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信