变色石榴石的矿物学特征以及光路长度对颜色的影响

IF 0.9 4区 材料科学
Weiming Liu, Yan Qiu, Ying Guo
{"title":"变色石榴石的矿物学特征以及光路长度对颜色的影响","authors":"Weiming Liu, Yan Qiu, Ying Guo","doi":"10.1166/sam.2024.4649","DOIUrl":null,"url":null,"abstract":"The color-changing garnet displays the “alexandrite effect”, changing from green in daylight to purplish-red under incandescent light. The mineralogical characteristics of color-changing garnet is analyzed using Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy,\n an electron probe, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The color of garnets with different thicknesses was calculated using the International Commission on Illumination (CIE 1976) L*a*b* uniform color system. The results revealed\n the presence of rutile inclusions in color-changing garnet. Strong absorption in both the blue-violet zone and orange-yellow zone was the main cause for the color-changing effect of garnet. The distribution pattern of rare earth elements (REE) was left-leaning, showing the enrichment of heavy\n rare earth elements (HREE) and depletion of light rare earth elements (LREE). As the total Cr and V concentrations increased, the area of the 574 nm absorption peak in the UV-Vis spectrum also increased, leading to a more significant variation in color ΔE*ab.\n The light path length of the gemstone had a significant impact on the extent of the color-changing effect. The color difference reached a maximum and the color-changing effect was most visible when the thickness of the gemstone was 5 mm.","PeriodicalId":21671,"journal":{"name":"Science of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mineralogical Characteristics of Color-Changing Garnet and the Effect of Light Path Length on Color\",\"authors\":\"Weiming Liu, Yan Qiu, Ying Guo\",\"doi\":\"10.1166/sam.2024.4649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The color-changing garnet displays the “alexandrite effect”, changing from green in daylight to purplish-red under incandescent light. The mineralogical characteristics of color-changing garnet is analyzed using Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy,\\n an electron probe, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The color of garnets with different thicknesses was calculated using the International Commission on Illumination (CIE 1976) L*a*b* uniform color system. The results revealed\\n the presence of rutile inclusions in color-changing garnet. Strong absorption in both the blue-violet zone and orange-yellow zone was the main cause for the color-changing effect of garnet. The distribution pattern of rare earth elements (REE) was left-leaning, showing the enrichment of heavy\\n rare earth elements (HREE) and depletion of light rare earth elements (LREE). As the total Cr and V concentrations increased, the area of the 574 nm absorption peak in the UV-Vis spectrum also increased, leading to a more significant variation in color ΔE*ab.\\n The light path length of the gemstone had a significant impact on the extent of the color-changing effect. The color difference reached a maximum and the color-changing effect was most visible when the thickness of the gemstone was 5 mm.\",\"PeriodicalId\":21671,\"journal\":{\"name\":\"Science of Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1166/sam.2024.4649\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/sam.2024.4649","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变色石榴石显示出 "变石效应",在日光下由绿色变为白炽灯下的紫红色。变色石榴石的矿物学特征是通过拉曼光谱、紫外-可见(UV-Vis)光谱、电子探针和激光烧蚀-电感耦合等离子体-质谱(LA-ICP-MS)分析得出的。采用国际照明委员会(CIE,1976 年)的 L*a*b* 统一颜色系统计算了不同厚度石榴石的颜色。结果显示变色石榴石中存在金红石包裹体。蓝紫色区和橙黄色区的强吸收是石榴石变色效应的主要原因。稀土元素(REE)的分布模式呈左倾,表现为重稀土元素(HREE)的富集和轻稀土元素(LREE)的贫化。随着总铬和总钒浓度的增加,紫外可见光谱中 574 纳米吸收峰的面积也随之增加,从而导致颜色 ΔE*ab 出现更显著的变化。宝石的光路长度对变色效应的程度有显著影响。当宝石的厚度为 5 毫米时,色差达到最大值,变色效果也最明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mineralogical Characteristics of Color-Changing Garnet and the Effect of Light Path Length on Color
The color-changing garnet displays the “alexandrite effect”, changing from green in daylight to purplish-red under incandescent light. The mineralogical characteristics of color-changing garnet is analyzed using Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, an electron probe, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The color of garnets with different thicknesses was calculated using the International Commission on Illumination (CIE 1976) L*a*b* uniform color system. The results revealed the presence of rutile inclusions in color-changing garnet. Strong absorption in both the blue-violet zone and orange-yellow zone was the main cause for the color-changing effect of garnet. The distribution pattern of rare earth elements (REE) was left-leaning, showing the enrichment of heavy rare earth elements (HREE) and depletion of light rare earth elements (LREE). As the total Cr and V concentrations increased, the area of the 574 nm absorption peak in the UV-Vis spectrum also increased, leading to a more significant variation in color ΔE*ab. The light path length of the gemstone had a significant impact on the extent of the color-changing effect. The color difference reached a maximum and the color-changing effect was most visible when the thickness of the gemstone was 5 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Advanced Materials
Science of Advanced Materials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
11.10%
发文量
98
审稿时长
4.4 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信