复杂单位增益图的无效性界限

IF 1 3区 数学 Q1 MATHEMATICS
Qian-Qian Chen , Ji-Ming Guo
{"title":"复杂单位增益图的无效性界限","authors":"Qian-Qian Chen ,&nbsp;Ji-Ming Guo","doi":"10.1016/j.laa.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>A complex unit gain graph, or <span><math><mi>T</mi></math></span>-gain graph, is a triple <span><math><mi>Φ</mi><mo>=</mo><mo>(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>,</mo><mi>φ</mi><mo>)</mo></math></span> comprised of a simple graph <em>G</em> as the underlying graph of Φ, the set of unit complex numbers <span><math><mi>T</mi><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi>C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo>=</mo><mn>1</mn><mo>}</mo></math></span>, and a gain function <span><math><mi>φ</mi><mo>:</mo><mover><mrow><mi>E</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>→</mo><mi>T</mi></math></span> with the property that <span><math><mi>φ</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>φ</mi><msup><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>j</mi><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. A cactus graph is a connected graph in which any two cycles have at most one vertex in common.</p><p>In this paper, we firstly show that there does not exist a complex unit gain graph with nullity <span><math><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>2</mn><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are the order, matching number, and cyclomatic number of <em>G</em>. Next, we provide a lower bound on the nullity for connected complex unit gain graphs and an upper bound on the nullity for complex unit gain bipartite graphs. Finally, we characterize all non-singular complex unit gain bipartite cactus graphs, which generalizes a result in Wong et al. (2022) <span><span>[30]</span></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds of nullity for complex unit gain graphs\",\"authors\":\"Qian-Qian Chen ,&nbsp;Ji-Ming Guo\",\"doi\":\"10.1016/j.laa.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A complex unit gain graph, or <span><math><mi>T</mi></math></span>-gain graph, is a triple <span><math><mi>Φ</mi><mo>=</mo><mo>(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>,</mo><mi>φ</mi><mo>)</mo></math></span> comprised of a simple graph <em>G</em> as the underlying graph of Φ, the set of unit complex numbers <span><math><mi>T</mi><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi>C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo>=</mo><mn>1</mn><mo>}</mo></math></span>, and a gain function <span><math><mi>φ</mi><mo>:</mo><mover><mrow><mi>E</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>→</mo><mi>T</mi></math></span> with the property that <span><math><mi>φ</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>φ</mi><msup><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>j</mi><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. A cactus graph is a connected graph in which any two cycles have at most one vertex in common.</p><p>In this paper, we firstly show that there does not exist a complex unit gain graph with nullity <span><math><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>2</mn><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are the order, matching number, and cyclomatic number of <em>G</em>. Next, we provide a lower bound on the nullity for connected complex unit gain graphs and an upper bound on the nullity for complex unit gain bipartite graphs. Finally, we characterize all non-singular complex unit gain bipartite cactus graphs, which generalizes a result in Wong et al. (2022) <span><span>[30]</span></span>.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002969\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002969","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

复数单位增益图或 T 增益图是一个三元组 Φ=(G,T,φ),由作为 Φ 底图的简单图 G、单位复数集合 T={z∈C:|z|=1} 和增益函数 φ:E→→T 组成,其性质为 φ(eij)=φ(eji)-1 。本文首先证明不存在空性为 n(G)-2m(G)+2c(G)-1(其中 n(G)、m(G)和 c(G) 分别为 G 的阶、匹配数和循环数)的复数单位增益图。最后,我们描述了所有非星状复数单位增益双方形仙人掌图的特征,这概括了 Wong 等人(2022)[30] 的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds of nullity for complex unit gain graphs

A complex unit gain graph, or T-gain graph, is a triple Φ=(G,T,φ) comprised of a simple graph G as the underlying graph of Φ, the set of unit complex numbers T={zC:|z|=1}, and a gain function φ:ET with the property that φ(eij)=φ(eji)1. A cactus graph is a connected graph in which any two cycles have at most one vertex in common.

In this paper, we firstly show that there does not exist a complex unit gain graph with nullity n(G)2m(G)+2c(G)1, where n(G), m(G) and c(G) are the order, matching number, and cyclomatic number of G. Next, we provide a lower bound on the nullity for connected complex unit gain graphs and an upper bound on the nullity for complex unit gain bipartite graphs. Finally, we characterize all non-singular complex unit gain bipartite cactus graphs, which generalizes a result in Wong et al. (2022) [30].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信