步阳黄酒汤通过抑制大鼠脑微血管内皮细胞的糖酵解和细胞凋亡,抑制缺血性中风的发生

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Ci Song , Xia Fang , Ni Fang, Fang Hu
{"title":"步阳黄酒汤通过抑制大鼠脑微血管内皮细胞的糖酵解和细胞凋亡,抑制缺血性中风的发生","authors":"Ci Song ,&nbsp;Xia Fang ,&nbsp;Ni Fang,&nbsp;Fang Hu","doi":"10.1016/j.brainresbull.2024.111032","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism.</p></div><div><h3>Methods</h3><p>The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes.</p></div><div><h3>Results</h3><p>Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs’ cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs.</p></div><div><h3>Conclusion</h3><p>In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"215 ","pages":"Article 111032"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001655/pdfft?md5=5f1e15fe27b32d0300267c692f4caedb&pid=1-s2.0-S0361923024001655-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Buyang Huanwu Decoction suppresses ischemic stroke by suppressing glycolysis and cell apoptosis in rat brain microvascular endothelial cells\",\"authors\":\"Ci Song ,&nbsp;Xia Fang ,&nbsp;Ni Fang,&nbsp;Fang Hu\",\"doi\":\"10.1016/j.brainresbull.2024.111032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism.</p></div><div><h3>Methods</h3><p>The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes.</p></div><div><h3>Results</h3><p>Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs’ cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs.</p></div><div><h3>Conclusion</h3><p>In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.</p></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"215 \",\"pages\":\"Article 111032\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001655/pdfft?md5=5f1e15fe27b32d0300267c692f4caedb&pid=1-s2.0-S0361923024001655-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001655\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001655","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景纯阳黄芪汤(BHD)被广泛应用于缺血性脑血管病的治疗和预防。方法建立大脑中动脉闭塞(MCAO)大鼠模型和氧-葡萄糖剥夺再氧合(OGD/R)大鼠脑微血管内皮细胞(RBMVEC)模型。计算MCAO手术后脑梗塞的大小和神经系统评分。埃文斯蓝用于测量血脑屏障(BBB)的通透性。细胞计数试剂盒-8(CCK-8)和TUNEL检测法用于评估RBMVECs的细胞活力和凋亡。结果表明,BHD治疗后,MCAO组大鼠较高的梗死体积、神经评分和BBB通透性均有所降低。药物血清(DS)处理对正常 RBMVECs 的细胞活力和细胞凋亡没有影响。此外,DS处理降低了正常和OGD/R诱导的RBMVECs的乳酸生成、葡萄糖摄取和细胞外酸化率。DS处理下调了OGD/R处理的RBMVECs中泛赖氨酸乳化(kla)、组蛋白H3赖氨酸18乳化(H3K18la)和凋亡蛋白酶激活因子-1(Apaf-1)的蛋白水平。总之,BHD 通过抑制 pan-kla 和 H3K18la 蛋白水平以及 Apaf-1 的转录活性来抑制糖酵解和细胞凋亡,从而抑制 IS 的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buyang Huanwu Decoction suppresses ischemic stroke by suppressing glycolysis and cell apoptosis in rat brain microvascular endothelial cells

Background

Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism.

Methods

The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes.

Results

Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs’ cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs.

Conclusion

In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Research Bulletin
Brain Research Bulletin 医学-神经科学
CiteScore
6.90
自引率
2.60%
发文量
253
审稿时长
67 days
期刊介绍: The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信