{"title":"二甲双胍可增强高血糖和高血脂条件下培养的卵母细胞中除纺锤体组织外的主要细胞质组织:体外研究","authors":"","doi":"10.1016/j.taap.2024.117039","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aimed to investigate the role of antidiabetic drug metformin on the cytoplasmic organization of oocytes. Germinal vesicle (GV) stage oocytes were collected from adult female Swiss albino mice and subjected to <em>in vitro</em> maturation (IVM) in various experimental groups- control, vehicle control (0.3% ethanol), metformin (50 μg/mL), high glucose and high lipid (HGHL, 10 mM glucose; 150 μM palmitic acid; 75 μM stearic acid and 200 μM oleic acid in ethanol), and HGHL supplemented with metformin. The metaphase II (MII) oocytes were analyzed for lipid accumulation, mitochondrial and endoplasmic reticulum (ER) distribution pattern, oxidative and ER stress, actin filament organization, cortical granule distribution pattern, spindle organization and chromosome alignment. An early polar body extrusion was observed in the HGHL group. However, the maturation rate at 24 h did not differ significantly among the experimental groups compared to the control. The HGHL conditions exhibited significantly higher levels of oxidative stress, ER stress, poor actin filament organization, increased lipid accumulation, altered mitochondrial distribution, spindle abnormalities, and chromosome misalignment compared to the control. Except for spindle organization, supplementation of metformin to the HGHL conditions improved all the parameters (non-significant for ER and actin distribution pattern)<strong>.</strong> These results show that metformin exposure in the culture media helped to improve the hyperglycemia and hyperlipidemia-induced cytoplasmic anomalies except for spindle organization. Given the crucial role of spindle organization in proper chromosome segregation during oocyte maturation and meiotic resumption, the implications of metformin's limitations in this aspect warrant careful evaluation and further investigation.</p></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0041008X24002370/pdfft?md5=ce1dd83e1c451dd15a716d25f3b2e2e1&pid=1-s2.0-S0041008X24002370-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Metformin augments major cytoplasmic organization except for spindle organization in oocytes cultured under hyperglycemic and hyperlipidemic conditions: An in vitro study\",\"authors\":\"\",\"doi\":\"10.1016/j.taap.2024.117039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study aimed to investigate the role of antidiabetic drug metformin on the cytoplasmic organization of oocytes. Germinal vesicle (GV) stage oocytes were collected from adult female Swiss albino mice and subjected to <em>in vitro</em> maturation (IVM) in various experimental groups- control, vehicle control (0.3% ethanol), metformin (50 μg/mL), high glucose and high lipid (HGHL, 10 mM glucose; 150 μM palmitic acid; 75 μM stearic acid and 200 μM oleic acid in ethanol), and HGHL supplemented with metformin. The metaphase II (MII) oocytes were analyzed for lipid accumulation, mitochondrial and endoplasmic reticulum (ER) distribution pattern, oxidative and ER stress, actin filament organization, cortical granule distribution pattern, spindle organization and chromosome alignment. An early polar body extrusion was observed in the HGHL group. However, the maturation rate at 24 h did not differ significantly among the experimental groups compared to the control. The HGHL conditions exhibited significantly higher levels of oxidative stress, ER stress, poor actin filament organization, increased lipid accumulation, altered mitochondrial distribution, spindle abnormalities, and chromosome misalignment compared to the control. Except for spindle organization, supplementation of metformin to the HGHL conditions improved all the parameters (non-significant for ER and actin distribution pattern)<strong>.</strong> These results show that metformin exposure in the culture media helped to improve the hyperglycemia and hyperlipidemia-induced cytoplasmic anomalies except for spindle organization. Given the crucial role of spindle organization in proper chromosome segregation during oocyte maturation and meiotic resumption, the implications of metformin's limitations in this aspect warrant careful evaluation and further investigation.</p></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0041008X24002370/pdfft?md5=ce1dd83e1c451dd15a716d25f3b2e2e1&pid=1-s2.0-S0041008X24002370-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X24002370\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24002370","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Metformin augments major cytoplasmic organization except for spindle organization in oocytes cultured under hyperglycemic and hyperlipidemic conditions: An in vitro study
The present study aimed to investigate the role of antidiabetic drug metformin on the cytoplasmic organization of oocytes. Germinal vesicle (GV) stage oocytes were collected from adult female Swiss albino mice and subjected to in vitro maturation (IVM) in various experimental groups- control, vehicle control (0.3% ethanol), metformin (50 μg/mL), high glucose and high lipid (HGHL, 10 mM glucose; 150 μM palmitic acid; 75 μM stearic acid and 200 μM oleic acid in ethanol), and HGHL supplemented with metformin. The metaphase II (MII) oocytes were analyzed for lipid accumulation, mitochondrial and endoplasmic reticulum (ER) distribution pattern, oxidative and ER stress, actin filament organization, cortical granule distribution pattern, spindle organization and chromosome alignment. An early polar body extrusion was observed in the HGHL group. However, the maturation rate at 24 h did not differ significantly among the experimental groups compared to the control. The HGHL conditions exhibited significantly higher levels of oxidative stress, ER stress, poor actin filament organization, increased lipid accumulation, altered mitochondrial distribution, spindle abnormalities, and chromosome misalignment compared to the control. Except for spindle organization, supplementation of metformin to the HGHL conditions improved all the parameters (non-significant for ER and actin distribution pattern). These results show that metformin exposure in the culture media helped to improve the hyperglycemia and hyperlipidemia-induced cytoplasmic anomalies except for spindle organization. Given the crucial role of spindle organization in proper chromosome segregation during oocyte maturation and meiotic resumption, the implications of metformin's limitations in this aspect warrant careful evaluation and further investigation.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.