将纳米片场效应晶体管扩展到 2 纳米以下节点所面临的挑战

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Murad G. K. Alabdullah;M. A. Elmessary;D. Nagy;N. Seoane;A. J. García-Loureiro;K. Kalna
{"title":"将纳米片场效应晶体管扩展到 2 纳米以下节点所面临的挑战","authors":"Murad G. K. Alabdullah;M. A. Elmessary;D. Nagy;N. Seoane;A. J. García-Loureiro;K. Kalna","doi":"10.1109/JEDS.2024.3416200","DOIUrl":null,"url":null,"abstract":"The scaling of nanosheet (NS) field effect transistors (FETs) from the 12 nm gate length to the ultimate gate length of 10 nm for sub-2 nm nodes brings additional technological challenges. Here, 3D finite element Monte Carlo simulations are employed to explore how to alter the NS architecture to increase the drive current (\n<inline-formula> <tex-math>${I}_{\\mathrm {\\mathbf { DD}}}$ </tex-math></inline-formula>\n) because the gate scaling to 10 nm results in a decline of the current (by \n<inline-formula> <tex-math>$\\mathbf {10.7}$ </tex-math></inline-formula>\n%). \n<inline-formula> <tex-math>${I}_{\\mathrm {\\mathbf {DD}}}$ </tex-math></inline-formula>\n of the 10 nm gate length NS FET will increase by 11% if the maximum n-type source/drain doping reaches \n<inline-formula> <tex-math>$1\\times 10^{20} \\mathrm {cm^{-3}}$ </tex-math></inline-formula>\n, or increase by \n<inline-formula> <tex-math>$\\mathbf {3.8}$ </tex-math></inline-formula>\n% if the high-\n<inline-formula> <tex-math>$\\kappa $ </tex-math></inline-formula>\n dielectric layer equivalent oxide thickness (EOT) is less than \n<inline-formula> <tex-math>$\\mathbf {1.0}$ </tex-math></inline-formula>\n nm. The reduction in the channel width below 40 nm or the reduction in the channel thickness below 5 nm will substantially decrease IDD. The sub-threshold figures of merit like the sub-threshold slope (SS) will decrease from 75 to 73 mV/dec, while the drain-induced barrier lowering (DIBL) will increase from 32 to 77 mV/V. Finally, the effect of strain to increase the drive current is strongly limited by quantum confinement. \n<inline-formula> <tex-math>${I}_{\\mathrm {\\mathbf {DD}}}$ </tex-math></inline-formula>\n will increase by 3% and by 14% in the 10 nm gate NS FET with the \n<inline-formula> <tex-math>$\\langle 110\\rangle $ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$\\langle 100\\rangle $ </tex-math></inline-formula>\n channel orientations, respectively, when a strain of \n<inline-formula> <tex-math>$\\mathbf {0.5}$ </tex-math></inline-formula>\n% is applied to the channel, with a negligible increase for larger strain values (\n<inline-formula> <tex-math>$\\mathbf {0.7}$ </tex-math></inline-formula>\n% and \n<inline-formula> <tex-math>$\\mathbf {1.0}$ </tex-math></inline-formula>\n%).","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561475","citationCount":"0","resultStr":"{\"title\":\"Scaling Challenges of Nanosheet Field-Effect Transistors Into Sub-2 nm Nodes\",\"authors\":\"Murad G. K. Alabdullah;M. A. Elmessary;D. Nagy;N. Seoane;A. J. García-Loureiro;K. Kalna\",\"doi\":\"10.1109/JEDS.2024.3416200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scaling of nanosheet (NS) field effect transistors (FETs) from the 12 nm gate length to the ultimate gate length of 10 nm for sub-2 nm nodes brings additional technological challenges. Here, 3D finite element Monte Carlo simulations are employed to explore how to alter the NS architecture to increase the drive current (\\n<inline-formula> <tex-math>${I}_{\\\\mathrm {\\\\mathbf { DD}}}$ </tex-math></inline-formula>\\n) because the gate scaling to 10 nm results in a decline of the current (by \\n<inline-formula> <tex-math>$\\\\mathbf {10.7}$ </tex-math></inline-formula>\\n%). \\n<inline-formula> <tex-math>${I}_{\\\\mathrm {\\\\mathbf {DD}}}$ </tex-math></inline-formula>\\n of the 10 nm gate length NS FET will increase by 11% if the maximum n-type source/drain doping reaches \\n<inline-formula> <tex-math>$1\\\\times 10^{20} \\\\mathrm {cm^{-3}}$ </tex-math></inline-formula>\\n, or increase by \\n<inline-formula> <tex-math>$\\\\mathbf {3.8}$ </tex-math></inline-formula>\\n% if the high-\\n<inline-formula> <tex-math>$\\\\kappa $ </tex-math></inline-formula>\\n dielectric layer equivalent oxide thickness (EOT) is less than \\n<inline-formula> <tex-math>$\\\\mathbf {1.0}$ </tex-math></inline-formula>\\n nm. The reduction in the channel width below 40 nm or the reduction in the channel thickness below 5 nm will substantially decrease IDD. The sub-threshold figures of merit like the sub-threshold slope (SS) will decrease from 75 to 73 mV/dec, while the drain-induced barrier lowering (DIBL) will increase from 32 to 77 mV/V. Finally, the effect of strain to increase the drive current is strongly limited by quantum confinement. \\n<inline-formula> <tex-math>${I}_{\\\\mathrm {\\\\mathbf {DD}}}$ </tex-math></inline-formula>\\n will increase by 3% and by 14% in the 10 nm gate NS FET with the \\n<inline-formula> <tex-math>$\\\\langle 110\\\\rangle $ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$\\\\langle 100\\\\rangle $ </tex-math></inline-formula>\\n channel orientations, respectively, when a strain of \\n<inline-formula> <tex-math>$\\\\mathbf {0.5}$ </tex-math></inline-formula>\\n% is applied to the channel, with a negligible increase for larger strain values (\\n<inline-formula> <tex-math>$\\\\mathbf {0.7}$ </tex-math></inline-formula>\\n% and \\n<inline-formula> <tex-math>$\\\\mathbf {1.0}$ </tex-math></inline-formula>\\n%).\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561475\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561475/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10561475/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

纳米片(NS)场效应晶体管(FET)的栅极长度从 12 nm 增加到 10 nm,为 2 nm 以下节点带来了额外的技术挑战。由于栅极扩展到 10 纳米会导致电流下降(下降了 $\mathbf {10.7}$%),因此这里采用了三维有限元蒙特卡罗模拟来探索如何改变 NS 架构以增加驱动电流(${I}_{\mathrm {\mathbf { DD}}$ )。 如果 n 型源极/漏极的最大掺杂量达到 $1\times 10^{20} ,10 nm 栅极长度的 NS FET 的 ${I}_{mathrm {\mathbf {DD}}$ 将增加 11%。}\mathrm {cm^{-3}}$ ,或者如果高 $\kappa $ 介质层等效氧化物厚度 (EOT) 小于 $\mathbf {1.0}$ nm,则通道宽度将增加 $\mathbf {3.8}$ %。将沟道宽度减小到 40 nm 以下或将沟道厚度减小到 5 nm 以下将大大降低 IDD。阈下斜率(SS)等阈下性能指标将从 75 mV/dec 下降到 73 mV/dec,而漏极诱导势垒降低(DIBL)将从 32 mV/V 上升到 77 mV/V。最后,应变对增加驱动电流的影响受到量子约束的强烈限制。 当在沟道上施加 $\mathbf {0.5}$ % 的应变时,在沟道方向为 $\langle 110\rangle $ 和 $\langle 100\rangle $ 的 10 nm 栅极 NS FET 中,${I}_\{mathrm {\mathbf {DD}}$ 将分别增加 3% 和 14%,而当应变值较大时($\mathbf {0.7}$ % 和 $\mathbf {1.0}$ %),增加幅度可以忽略不计。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling Challenges of Nanosheet Field-Effect Transistors Into Sub-2 nm Nodes
The scaling of nanosheet (NS) field effect transistors (FETs) from the 12 nm gate length to the ultimate gate length of 10 nm for sub-2 nm nodes brings additional technological challenges. Here, 3D finite element Monte Carlo simulations are employed to explore how to alter the NS architecture to increase the drive current ( ${I}_{\mathrm {\mathbf { DD}}}$ ) because the gate scaling to 10 nm results in a decline of the current (by $\mathbf {10.7}$ %). ${I}_{\mathrm {\mathbf {DD}}}$ of the 10 nm gate length NS FET will increase by 11% if the maximum n-type source/drain doping reaches $1\times 10^{20} \mathrm {cm^{-3}}$ , or increase by $\mathbf {3.8}$ % if the high- $\kappa $ dielectric layer equivalent oxide thickness (EOT) is less than $\mathbf {1.0}$ nm. The reduction in the channel width below 40 nm or the reduction in the channel thickness below 5 nm will substantially decrease IDD. The sub-threshold figures of merit like the sub-threshold slope (SS) will decrease from 75 to 73 mV/dec, while the drain-induced barrier lowering (DIBL) will increase from 32 to 77 mV/V. Finally, the effect of strain to increase the drive current is strongly limited by quantum confinement. ${I}_{\mathrm {\mathbf {DD}}}$ will increase by 3% and by 14% in the 10 nm gate NS FET with the $\langle 110\rangle $ and $\langle 100\rangle $ channel orientations, respectively, when a strain of $\mathbf {0.5}$ % is applied to the channel, with a negligible increase for larger strain values ( $\mathbf {0.7}$ % and $\mathbf {1.0}$ %).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信