Zareen Amtul, Forough Firoozbakht, Iman Rezaeian, Arham A Aziz, Padmini Gehlaut
{"title":"模块化探究式学期主题,将数据科学教育和生物信息学整合到蛋白质结构功能课程中。","authors":"Zareen Amtul, Forough Firoozbakht, Iman Rezaeian, Arham A Aziz, Padmini Gehlaut","doi":"10.1093/femsle/fnae055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With an exponential growth in biological data and computing power, familiarity with bioinformatics has become a demanding and popular skill set both in academia and industry. There is a need to increase students' competencies to be able to take on bioinformatic careers, to get them familiarized with scientific professions in data science and the academic training required to pursue them, in a field where demand outweighs the supply.</p><p><strong>Methods: </strong>Here we implemented a set of bioinformatic activities into a protein structure and function course of a graduate program. Concisely, students were given hands-on opportunities to explore the bioinformatics-based analyses of biomolecular data and structural biology via a semester-long case study structured as inquiry-based bioinformatics exercises. Towards the end of the term, the students also designed and presented an assignment project that allowed them to document the unknown protein that they identified using bioinformatic knowledge during the term.</p><p><strong>Results: </strong>The post-module survey responses and students' performances in the lab module imply that it furthered an in-depth knowledge of bioinformatics. Despite having not much prior knowledge of bioinformatics prior to taking this module students indicated positive feedback.</p><p><strong>Conclusion: </strong>The students got familiar with cross-indexed databases that interlink important data about proteins, enzymes as well as genes. The essential skillsets honed by this research-based bioinformatic pedagogical approach will empower students to be able to leverage this knowledge for their future endeavours in the bioinformatics field.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339600/pdf/","citationCount":"0","resultStr":"{\"title\":\"A modular inquiry-based semester theme that integrates data science education and bioinformatics in protein structure function courses.\",\"authors\":\"Zareen Amtul, Forough Firoozbakht, Iman Rezaeian, Arham A Aziz, Padmini Gehlaut\",\"doi\":\"10.1093/femsle/fnae055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>With an exponential growth in biological data and computing power, familiarity with bioinformatics has become a demanding and popular skill set both in academia and industry. There is a need to increase students' competencies to be able to take on bioinformatic careers, to get them familiarized with scientific professions in data science and the academic training required to pursue them, in a field where demand outweighs the supply.</p><p><strong>Methods: </strong>Here we implemented a set of bioinformatic activities into a protein structure and function course of a graduate program. Concisely, students were given hands-on opportunities to explore the bioinformatics-based analyses of biomolecular data and structural biology via a semester-long case study structured as inquiry-based bioinformatics exercises. Towards the end of the term, the students also designed and presented an assignment project that allowed them to document the unknown protein that they identified using bioinformatic knowledge during the term.</p><p><strong>Results: </strong>The post-module survey responses and students' performances in the lab module imply that it furthered an in-depth knowledge of bioinformatics. Despite having not much prior knowledge of bioinformatics prior to taking this module students indicated positive feedback.</p><p><strong>Conclusion: </strong>The students got familiar with cross-indexed databases that interlink important data about proteins, enzymes as well as genes. The essential skillsets honed by this research-based bioinformatic pedagogical approach will empower students to be able to leverage this knowledge for their future endeavours in the bioinformatics field.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339600/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae055\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A modular inquiry-based semester theme that integrates data science education and bioinformatics in protein structure function courses.
Background: With an exponential growth in biological data and computing power, familiarity with bioinformatics has become a demanding and popular skill set both in academia and industry. There is a need to increase students' competencies to be able to take on bioinformatic careers, to get them familiarized with scientific professions in data science and the academic training required to pursue them, in a field where demand outweighs the supply.
Methods: Here we implemented a set of bioinformatic activities into a protein structure and function course of a graduate program. Concisely, students were given hands-on opportunities to explore the bioinformatics-based analyses of biomolecular data and structural biology via a semester-long case study structured as inquiry-based bioinformatics exercises. Towards the end of the term, the students also designed and presented an assignment project that allowed them to document the unknown protein that they identified using bioinformatic knowledge during the term.
Results: The post-module survey responses and students' performances in the lab module imply that it furthered an in-depth knowledge of bioinformatics. Despite having not much prior knowledge of bioinformatics prior to taking this module students indicated positive feedback.
Conclusion: The students got familiar with cross-indexed databases that interlink important data about proteins, enzymes as well as genes. The essential skillsets honed by this research-based bioinformatic pedagogical approach will empower students to be able to leverage this knowledge for their future endeavours in the bioinformatics field.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.