确定和减少农业气候影响评估中不确定性的途径

IF 23.6 Q1 FOOD SCIENCE & TECHNOLOGY
Bin Wang, Jonas Jägermeyr, Garry J. O’Leary, Daniel Wallach, Alex C. Ruane, Puyu Feng, Linchao Li, De Li Liu, Cathy Waters, Qiang Yu, Senthold Asseng, Cynthia Rosenzweig
{"title":"确定和减少农业气候影响评估中不确定性的途径","authors":"Bin Wang, Jonas Jägermeyr, Garry J. O’Leary, Daniel Wallach, Alex C. Ruane, Puyu Feng, Linchao Li, De Li Liu, Cathy Waters, Qiang Yu, Senthold Asseng, Cynthia Rosenzweig","doi":"10.1038/s43016-024-01014-w","DOIUrl":null,"url":null,"abstract":"Both climate and impact models are essential for understanding and quantifying the impact of climate change on agricultural productivity. Multi-model ensembles have highlighted considerable uncertainties in these assessments, yet a systematic approach to quantify these uncertainties is lacking. We propose a standardized approach to attribute uncertainties in multi-model ensemble studies, based on insights from the Agricultural Model Intercomparison and Improvement Project. We find that crop model processes are the primary source of uncertainty in agricultural projections (over 50%), excluding unquantified hidden uncertainty that is not explicitly measured within the analyses. We propose multidimensional pathways to reduce uncertainty in climate change impact assessments. Accurately assessing the impacts of climate change on agricultural productivity is key to the development of effective and sustainable adaptation strategies. This Perspective discusses the main sources of uncertainty in such impact assessments and proposes strategies for improved crop modelling.","PeriodicalId":94151,"journal":{"name":"Nature food","volume":"5 7","pages":"550-556"},"PeriodicalIF":23.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathways to identify and reduce uncertainties in agricultural climate impact assessments\",\"authors\":\"Bin Wang, Jonas Jägermeyr, Garry J. O’Leary, Daniel Wallach, Alex C. Ruane, Puyu Feng, Linchao Li, De Li Liu, Cathy Waters, Qiang Yu, Senthold Asseng, Cynthia Rosenzweig\",\"doi\":\"10.1038/s43016-024-01014-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both climate and impact models are essential for understanding and quantifying the impact of climate change on agricultural productivity. Multi-model ensembles have highlighted considerable uncertainties in these assessments, yet a systematic approach to quantify these uncertainties is lacking. We propose a standardized approach to attribute uncertainties in multi-model ensemble studies, based on insights from the Agricultural Model Intercomparison and Improvement Project. We find that crop model processes are the primary source of uncertainty in agricultural projections (over 50%), excluding unquantified hidden uncertainty that is not explicitly measured within the analyses. We propose multidimensional pathways to reduce uncertainty in climate change impact assessments. Accurately assessing the impacts of climate change on agricultural productivity is key to the development of effective and sustainable adaptation strategies. This Perspective discusses the main sources of uncertainty in such impact assessments and proposes strategies for improved crop modelling.\",\"PeriodicalId\":94151,\"journal\":{\"name\":\"Nature food\",\"volume\":\"5 7\",\"pages\":\"550-556\"},\"PeriodicalIF\":23.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43016-024-01014-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43016-024-01014-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

气候模型和影响模型对于理解和量化气候变化对农业生产力的影响至关重要。多模型集合凸显了这些评估中相当大的不确定性,但却缺乏量化这些不确定性的系统方法。我们根据农业模式相互比较和改进项目的见解,提出了一种标准化方法来确定多模式集合研究中的不确定性。我们发现,作物模型过程是农业预测中不确定性的主要来源(超过 50%),这还不包括在分析中没有明确测量的未量化的隐藏不确定性。我们提出了减少气候变化影响评估中不确定性的多维途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pathways to identify and reduce uncertainties in agricultural climate impact assessments

Pathways to identify and reduce uncertainties in agricultural climate impact assessments

Pathways to identify and reduce uncertainties in agricultural climate impact assessments
Both climate and impact models are essential for understanding and quantifying the impact of climate change on agricultural productivity. Multi-model ensembles have highlighted considerable uncertainties in these assessments, yet a systematic approach to quantify these uncertainties is lacking. We propose a standardized approach to attribute uncertainties in multi-model ensemble studies, based on insights from the Agricultural Model Intercomparison and Improvement Project. We find that crop model processes are the primary source of uncertainty in agricultural projections (over 50%), excluding unquantified hidden uncertainty that is not explicitly measured within the analyses. We propose multidimensional pathways to reduce uncertainty in climate change impact assessments. Accurately assessing the impacts of climate change on agricultural productivity is key to the development of effective and sustainable adaptation strategies. This Perspective discusses the main sources of uncertainty in such impact assessments and proposes strategies for improved crop modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信