基于量级残差和距离测量的分类响应模型诊断法

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Patrícia Peres Araripe, Idemauro Antonio Rodrigues de Lara, Gabriel Rodrigues Palma, Niamh Cahill, Rafael de Andrade Moral
{"title":"基于量级残差和距离测量的分类响应模型诊断法","authors":"Patrícia Peres Araripe, Idemauro Antonio Rodrigues de Lara, Gabriel Rodrigues Palma, Niamh Cahill, Rafael de Andrade Moral","doi":"10.1080/02664763.2024.2367150","DOIUrl":null,"url":null,"abstract":"Polytomous categorical data are frequent in studies, that can be obtained with an individual or grouped structure. In both structures, the generalized logit model is commonly used to relate the cov...","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"56 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostics for categorical response models based on quantile residuals and distance measures\",\"authors\":\"Patrícia Peres Araripe, Idemauro Antonio Rodrigues de Lara, Gabriel Rodrigues Palma, Niamh Cahill, Rafael de Andrade Moral\",\"doi\":\"10.1080/02664763.2024.2367150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polytomous categorical data are frequent in studies, that can be obtained with an individual or grouped structure. In both structures, the generalized logit model is commonly used to relate the cov...\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2024.2367150\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2367150","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

多变量分类数据在研究中经常出现,这些数据可以用个体结构或分组结构获得。在这两种结构中,通常使用广义 logit 模型来将协方差和组方差联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostics for categorical response models based on quantile residuals and distance measures
Polytomous categorical data are frequent in studies, that can be obtained with an individual or grouped structure. In both structures, the generalized logit model is commonly used to relate the cov...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信