{"title":"低温条件下 FDSOI MOSFET 背栅效应的非线性行为","authors":"Yibo Hu, Zhipeng Ren, Yizhe Yin and Jing Chen","doi":"10.1088/1361-6641/ad5e17","DOIUrl":null,"url":null,"abstract":"In this work, we systematically investigate the DC performance of fully depleted silicon-on-insulator (FD-SOI) MOSFETs at both room and cryogenic temperatures as low as 77 K. The influences of back-gate bias on normal and flip-well devices are measured and analyzed. Both types devices display non-linear behaviors when adjusting the back-gate voltage at cryogenic temperatures. Notably, the non-linear effects are more prominent in normal-well devices. The possible reasons are analyzed and verified by technology computer aided design simulation, suggesting that normal-well devices are more susceptible to the formation of depletion regions between the buried oxide layer and the well. This phenomenon disrupts the linearity of the back-gate effect. This research contributes to understanding and characterizing of the back-gate effects in cryogenic environments and holds potential for high-performance computing applications.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"46 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear behaviors in back-gate effects of FDSOI MOSFETs at cryogenic temperatures\",\"authors\":\"Yibo Hu, Zhipeng Ren, Yizhe Yin and Jing Chen\",\"doi\":\"10.1088/1361-6641/ad5e17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we systematically investigate the DC performance of fully depleted silicon-on-insulator (FD-SOI) MOSFETs at both room and cryogenic temperatures as low as 77 K. The influences of back-gate bias on normal and flip-well devices are measured and analyzed. Both types devices display non-linear behaviors when adjusting the back-gate voltage at cryogenic temperatures. Notably, the non-linear effects are more prominent in normal-well devices. The possible reasons are analyzed and verified by technology computer aided design simulation, suggesting that normal-well devices are more susceptible to the formation of depletion regions between the buried oxide layer and the well. This phenomenon disrupts the linearity of the back-gate effect. This research contributes to understanding and characterizing of the back-gate effects in cryogenic environments and holds potential for high-performance computing applications.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad5e17\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad5e17","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们系统地研究了全耗尽型硅绝缘体(FD-SOI)MOSFET 在室温和低至 77 K 的低温条件下的直流性能。在低温条件下调节后栅极电压时,这两种器件都显示出非线性行为。值得注意的是,非线性效应在正常阱器件中更为突出。通过计算机辅助设计模拟技术分析和验证了可能的原因,认为正常阱器件更容易在埋入氧化层和阱之间形成耗尽区。这种现象破坏了背栅效应的线性。这项研究有助于理解和描述低温环境中的背栅效应,并为高性能计算应用提供了潜力。
Nonlinear behaviors in back-gate effects of FDSOI MOSFETs at cryogenic temperatures
In this work, we systematically investigate the DC performance of fully depleted silicon-on-insulator (FD-SOI) MOSFETs at both room and cryogenic temperatures as low as 77 K. The influences of back-gate bias on normal and flip-well devices are measured and analyzed. Both types devices display non-linear behaviors when adjusting the back-gate voltage at cryogenic temperatures. Notably, the non-linear effects are more prominent in normal-well devices. The possible reasons are analyzed and verified by technology computer aided design simulation, suggesting that normal-well devices are more susceptible to the formation of depletion regions between the buried oxide layer and the well. This phenomenon disrupts the linearity of the back-gate effect. This research contributes to understanding and characterizing of the back-gate effects in cryogenic environments and holds potential for high-performance computing applications.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.