使用 ChatGPT 筛选系统综述文章

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Eugene Syriani , Istvan David , Gauransh Kumar
{"title":"使用 ChatGPT 筛选系统综述文章","authors":"Eugene Syriani ,&nbsp;Istvan David ,&nbsp;Gauransh Kumar","doi":"10.1016/j.cola.2024.101287","DOIUrl":null,"url":null,"abstract":"<div><p>Systematic reviews (SRs) provide valuable evidence for guiding new research directions. However, the manual effort involved in selecting articles for inclusion in an SR is error-prone and time-consuming. While screening articles has traditionally been considered challenging to automate, the advent of large language models offers new possibilities. In this paper, we discuss the effect of using ChatGPT on the SR process. In particular, we investigate the effectiveness of different prompt strategies for automating the article screening process using five real SR datasets. Our results show that ChatGPT can reach up to 82% accuracy. The best performing prompts specify exclusion criteria and avoid negative shots. However, prompts should be adapted to different corpus characteristics.</p></div>","PeriodicalId":48552,"journal":{"name":"Journal of Computer Languages","volume":"80 ","pages":"Article 101287"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590118424000303/pdfft?md5=88fb1aa235050a4011046d39a856044b&pid=1-s2.0-S2590118424000303-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Screening articles for systematic reviews with ChatGPT\",\"authors\":\"Eugene Syriani ,&nbsp;Istvan David ,&nbsp;Gauransh Kumar\",\"doi\":\"10.1016/j.cola.2024.101287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Systematic reviews (SRs) provide valuable evidence for guiding new research directions. However, the manual effort involved in selecting articles for inclusion in an SR is error-prone and time-consuming. While screening articles has traditionally been considered challenging to automate, the advent of large language models offers new possibilities. In this paper, we discuss the effect of using ChatGPT on the SR process. In particular, we investigate the effectiveness of different prompt strategies for automating the article screening process using five real SR datasets. Our results show that ChatGPT can reach up to 82% accuracy. The best performing prompts specify exclusion criteria and avoid negative shots. However, prompts should be adapted to different corpus characteristics.</p></div>\",\"PeriodicalId\":48552,\"journal\":{\"name\":\"Journal of Computer Languages\",\"volume\":\"80 \",\"pages\":\"Article 101287\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590118424000303/pdfft?md5=88fb1aa235050a4011046d39a856044b&pid=1-s2.0-S2590118424000303-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Languages\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590118424000303\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Languages","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590118424000303","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

系统综述(SR)为指导新的研究方向提供了宝贵的证据。然而,人工筛选纳入系统综述的文章既容易出错又耗费时间。虽然筛选文章在传统上被认为具有自动化的挑战性,但大型语言模型的出现提供了新的可能性。在本文中,我们讨论了使用 ChatGPT 对 SR 流程的影响。特别是,我们使用五个真实的 SR 数据集研究了不同提示策略对文章筛选过程自动化的有效性。结果表明,ChatGPT 的准确率可达 82%。表现最好的提示指定了排除标准,避免了负面镜头。不过,提示应适应不同的语料特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening articles for systematic reviews with ChatGPT

Systematic reviews (SRs) provide valuable evidence for guiding new research directions. However, the manual effort involved in selecting articles for inclusion in an SR is error-prone and time-consuming. While screening articles has traditionally been considered challenging to automate, the advent of large language models offers new possibilities. In this paper, we discuss the effect of using ChatGPT on the SR process. In particular, we investigate the effectiveness of different prompt strategies for automating the article screening process using five real SR datasets. Our results show that ChatGPT can reach up to 82% accuracy. The best performing prompts specify exclusion criteria and avoid negative shots. However, prompts should be adapted to different corpus characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Languages
Journal of Computer Languages Computer Science-Computer Networks and Communications
CiteScore
5.00
自引率
13.60%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信