HL10 工程神经孢子菌利用氢氧化钠预处理过的小麦秸秆生产纤维二酸酯。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2024-10-01 Epub Date: 2024-07-12 DOI:10.1007/s00449-024-03061-w
Jiajie Wang, Takao Kasuga, Zhiliang Fan
{"title":"HL10 工程神经孢子菌利用氢氧化钠预处理过的小麦秸秆生产纤维二酸酯。","authors":"Jiajie Wang, Takao Kasuga, Zhiliang Fan","doi":"10.1007/s00449-024-03061-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1683-1690"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399197/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cellobionate production from sodium hydroxide pretreated wheat straw by engineered Neurospora crassa HL10.\",\"authors\":\"Jiajie Wang, Takao Kasuga, Zhiliang Fan\",\"doi\":\"10.1007/s00449-024-03061-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1683-1690\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399197/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03061-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03061-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用十字花科黑孢子属(Neurospora crassa HL10)研究了木质纤维素基质生产纤维硫酸盐的情况。使用 NaOH 预处理过的小麦秸秆作为底物,无需添加外源氧化还原介质,因为预处理过的小麦中所含的木质素可作为天然介质。在预处理过的小麦秸秆上,N. crassa HL10 的漆酶产量较低,导致胞二酸产生缓慢,而外源漆酶的添加加速了这一过程。环己亚胺诱导 N. crassa HL10 产生大量漆酶,使该菌株能从预处理过的小麦秸秆(相当于 20 克/升纤维素)中产生约 57 毫摩尔的纤维二酸酯,将转化时间从 8 天缩短到 6 天。预处理过的小麦秸秆中所含的纤维素约有 92% 转化为纤维二酸。与需要纯纤维素生物糖或纤维素酶的现有方法相比,该工艺无需补充酶或氧化还原介质,即可高效地将低成本原料转化为高产率的纤维酮酸盐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cellobionate production from sodium hydroxide pretreated wheat straw by engineered Neurospora crassa HL10.

Cellobionate production from sodium hydroxide pretreated wheat straw by engineered Neurospora crassa HL10.

This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信