光谱聚类稳定性的低阶 ODE

IF 1 3区 数学 Q1 MATHEMATICS
Nicola Guglielmi, Stefano Sicilia
{"title":"光谱聚类稳定性的低阶 ODE","authors":"Nicola Guglielmi, Stefano Sicilia","doi":"10.1016/j.laa.2024.07.001","DOIUrl":null,"url":null,"abstract":"Spectral clustering is a well-known technique which identifies clusters in an undirected graph, with vertices and weight matrix , by exploiting its graph Laplacian . In particular, the clusters can be identified by the knowledge of the eigenvectors associated with the smallest non zero eigenvalues of , say (recall that ). Identifying is an essential task of a clustering algorithm, since if is close to the reliability of the method is reduced. The -th spectral gap is often considered as a stability indicator. This difference can be seen as an unstructured distance between and an arbitrary symmetric matrix with vanishing -th spectral gap. A more appropriate structured distance to ambiguity such that represents the Laplacian of a graph has been proposed in Andreotti et al. (2021) . This is defined as the minimal distance between and Laplacians of graphs with the same vertices and edges, but with weights that are perturbed such that the -th spectral gap vanishes. In this article we consider a slightly different approach, still based on the reformulation of the problem into the minimization of a suitable functional in the eigenvalues. After determining the gradient system associated with this functional, we introduce a low-rank projected system, suggested by the underlying low-rank structure of the extremizers of the problem. The integration of this low-rank system, requires both a moderate computational effort and a memory requirement, as it is shown in some illustrative numerical examples.","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low-rank ODE for spectral clustering stability\",\"authors\":\"Nicola Guglielmi, Stefano Sicilia\",\"doi\":\"10.1016/j.laa.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral clustering is a well-known technique which identifies clusters in an undirected graph, with vertices and weight matrix , by exploiting its graph Laplacian . In particular, the clusters can be identified by the knowledge of the eigenvectors associated with the smallest non zero eigenvalues of , say (recall that ). Identifying is an essential task of a clustering algorithm, since if is close to the reliability of the method is reduced. The -th spectral gap is often considered as a stability indicator. This difference can be seen as an unstructured distance between and an arbitrary symmetric matrix with vanishing -th spectral gap. A more appropriate structured distance to ambiguity such that represents the Laplacian of a graph has been proposed in Andreotti et al. (2021) . This is defined as the minimal distance between and Laplacians of graphs with the same vertices and edges, but with weights that are perturbed such that the -th spectral gap vanishes. In this article we consider a slightly different approach, still based on the reformulation of the problem into the minimization of a suitable functional in the eigenvalues. After determining the gradient system associated with this functional, we introduce a low-rank projected system, suggested by the underlying low-rank structure of the extremizers of the problem. The integration of this low-rank system, requires both a moderate computational effort and a memory requirement, as it is shown in some illustrative numerical examples.\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.laa.2024.07.001\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.laa.2024.07.001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

频谱聚类是一种著名的技术,它通过利用无向图的图拉普拉卡矩阵来识别无向图中的聚类,无向图有顶点和权重矩阵 。具体来说,可以通过了解与Ⅳ的最小非零特征值相关的特征向量来识别聚类(回顾一下Ⅳ)。识别是聚类算法的一项基本任务,因为如果接近,方法的可靠性就会降低。第 - 次谱差通常被视为稳定性指标。这个差值可以看作是与任意对称矩阵之间的非结构化距离,而任意对称矩阵的-th谱间隙是消失的。Andreotti 等人(2021 年)提出了一种更合适的结构化模糊距离,它代表了图形的拉普拉卡方。它被定义为具有相同顶点和边的图的拉普拉斯与权重被扰动从而使-th谱间隙消失的图的拉普拉斯之间的最小距离。在本文中,我们考虑了一种略有不同的方法,其基础仍然是将问题重新表述为特征值中合适函数的最小化。在确定了与该函数相关的梯度系统后,我们引入了一个低阶投影系统,该系统由问题极值的潜在低阶结构提出。这个低阶系统的整合只需要适度的计算量和内存需求,这一点在一些数值示例中可以得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low-rank ODE for spectral clustering stability
Spectral clustering is a well-known technique which identifies clusters in an undirected graph, with vertices and weight matrix , by exploiting its graph Laplacian . In particular, the clusters can be identified by the knowledge of the eigenvectors associated with the smallest non zero eigenvalues of , say (recall that ). Identifying is an essential task of a clustering algorithm, since if is close to the reliability of the method is reduced. The -th spectral gap is often considered as a stability indicator. This difference can be seen as an unstructured distance between and an arbitrary symmetric matrix with vanishing -th spectral gap. A more appropriate structured distance to ambiguity such that represents the Laplacian of a graph has been proposed in Andreotti et al. (2021) . This is defined as the minimal distance between and Laplacians of graphs with the same vertices and edges, but with weights that are perturbed such that the -th spectral gap vanishes. In this article we consider a slightly different approach, still based on the reformulation of the problem into the minimization of a suitable functional in the eigenvalues. After determining the gradient system associated with this functional, we introduce a low-rank projected system, suggested by the underlying low-rank structure of the extremizers of the problem. The integration of this low-rank system, requires both a moderate computational effort and a memory requirement, as it is shown in some illustrative numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信