Xinxin Chen, Shujun Zhu, Jiali Han, Tao Zhao, Jianguo Pan, Shangke Pan
{"title":"基于自捕获态的黄色发光 [Epy]2[CuBr3]单晶的生长和光学特性","authors":"Xinxin Chen, Shujun Zhu, Jiali Han, Tao Zhao, Jianguo Pan, Shangke Pan","doi":"10.1002/crat.202400012","DOIUrl":null,"url":null,"abstract":"<p>The low-dimensional organic-inorganic lead halide compound has garnered significant attention in recent times due to its exceptional optoelectronic properties. However, its application in the field of optoelectronics has been hindered by the toxicity of lead. Here, a novel inorganic-organic compound [Epy]<sub>2</sub>[CuBr<sub>3</sub>] single crystal material with a 0D structure based on Cu(I) is introduced. The single crystal exhibits a broad band yellow luminescence, a significant Stokes shift, and a microsecond-scale photoluminescence (PL) lifetime, which is mainly attributed to the self-trapped excitons (STEs) excitation. In addition, the relevant PL spectra are measured at 78–348 K. The photoluminescence intensity decreases with increasing temperature due to strong electro-phonon coupling. The exciton binding energy E<sub>b</sub> of the crystal is 76.43 meV, and the Huang-Rhys factor S is 40.55. It is worth noting that the crystal also shows a good response to X-rays. Overall, [Epy]<sub>2</sub>[CuBr<sub>3</sub>] displays its good potential.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and Optical Properties of Yellow Luminescent [Epy]2[CuBr3] Single Crystals Based on Self Trapping States\",\"authors\":\"Xinxin Chen, Shujun Zhu, Jiali Han, Tao Zhao, Jianguo Pan, Shangke Pan\",\"doi\":\"10.1002/crat.202400012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The low-dimensional organic-inorganic lead halide compound has garnered significant attention in recent times due to its exceptional optoelectronic properties. However, its application in the field of optoelectronics has been hindered by the toxicity of lead. Here, a novel inorganic-organic compound [Epy]<sub>2</sub>[CuBr<sub>3</sub>] single crystal material with a 0D structure based on Cu(I) is introduced. The single crystal exhibits a broad band yellow luminescence, a significant Stokes shift, and a microsecond-scale photoluminescence (PL) lifetime, which is mainly attributed to the self-trapped excitons (STEs) excitation. In addition, the relevant PL spectra are measured at 78–348 K. The photoluminescence intensity decreases with increasing temperature due to strong electro-phonon coupling. The exciton binding energy E<sub>b</sub> of the crystal is 76.43 meV, and the Huang-Rhys factor S is 40.55. It is worth noting that the crystal also shows a good response to X-rays. Overall, [Epy]<sub>2</sub>[CuBr<sub>3</sub>] displays its good potential.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"59 8\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400012\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400012","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
摘要
近来,低维有机无机卤化铅化合物因其卓越的光电特性而备受关注。然而,铅的毒性阻碍了它在光电领域的应用。本文介绍了一种新型无机-有机化合物 [Epy]2[CuBr3]单晶材料,它具有基于 Cu(I) 的 0D 结构。该单晶表现出宽带黄色发光、显著的斯托克斯偏移和微秒级的光致发光(PL)寿命,这主要归因于自俘获激子(STEs)的激发。此外,相关的光致发光光谱是在 78-348 K 条件下测量的。由于强电-声子耦合,光致发光强度随温度升高而降低。晶体的激子结合能 Eb 为 76.43 meV,Huang-Rhys 因子 S 为 40.55。值得注意的是,该晶体对 X 射线也有良好的响应。总体而言,[Epy]2[CuBr3] 显示出了良好的潜力。
Growth and Optical Properties of Yellow Luminescent [Epy]2[CuBr3] Single Crystals Based on Self Trapping States
The low-dimensional organic-inorganic lead halide compound has garnered significant attention in recent times due to its exceptional optoelectronic properties. However, its application in the field of optoelectronics has been hindered by the toxicity of lead. Here, a novel inorganic-organic compound [Epy]2[CuBr3] single crystal material with a 0D structure based on Cu(I) is introduced. The single crystal exhibits a broad band yellow luminescence, a significant Stokes shift, and a microsecond-scale photoluminescence (PL) lifetime, which is mainly attributed to the self-trapped excitons (STEs) excitation. In addition, the relevant PL spectra are measured at 78–348 K. The photoluminescence intensity decreases with increasing temperature due to strong electro-phonon coupling. The exciton binding energy Eb of the crystal is 76.43 meV, and the Huang-Rhys factor S is 40.55. It is worth noting that the crystal also shows a good response to X-rays. Overall, [Epy]2[CuBr3] displays its good potential.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing