不同阶段癫痫脑电信号的非线性分析和识别。

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Journal of neurophysiology Pub Date : 2024-09-01 Epub Date: 2024-07-10 DOI:10.1152/jn.00055.2024
Xiaojie Lu, Jiqian Zhang, Shoufang Huang, Tingting Wang, Maosheng Wang, MingQuan Ye
{"title":"不同阶段癫痫脑电信号的非线性分析和识别。","authors":"Xiaojie Lu, Jiqian Zhang, Shoufang Huang, Tingting Wang, Maosheng Wang, MingQuan Ye","doi":"10.1152/jn.00055.2024","DOIUrl":null,"url":null,"abstract":"<p><p>It is a hot problem in epilepsy research to detect and predict seizures by EEG signals. Clinically, it is generally observed that there are only sudden abnormal signals during the ictal stage, but there is no significant difference in the EEG signal between the interictal and preictal stages. To solve the problem that preictal signals are difficult to recognize clinically, and then effectively improve the recognition efficiency of epileptic seizures, so, in this paper, some nonlinear methods are comprehensively used to extract the hidden information in the EEG signals in different stages, namely, phase space reconstruction (PSR), Poincaré section (PS), synchroextracting transform (SET), and machine learning for EEG signal analysis. First, PSR based on C-C method is used, and the results show that there are different diffuse attractor trajectories of the signals in different stages. Second, the confidence ellipse (CE) is constructed by using the scatter diagram of the corresponding trajectory on PS, and the aspect ratio and area of the ellipse are calculated. The results show that there is an interesting transitional phenomenon in preictal stage. To recognize ictal and preictal signals, time-frequency (TF) spectrums, which are processed by SET, are fed into the convolutional neural network (CNN) classifier. The accuracy of recognizing ictal and preictal signals reaches 99.7% and 93.7%, respectively. To summarize, our results based on nonlinear method provide new research ideas for seizure detection and prediction.<b>NEW & NOTEWORTHY</b> Our results based on nonlinear method have better practical significance and clinical application value and improved the prediction efficiency of epileptic EEG signals effectively. This work provides direct insight into the application of these biomarkers for seizure detection and prediction.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear analysis and recognition of epileptic EEG signals in different stages.\",\"authors\":\"Xiaojie Lu, Jiqian Zhang, Shoufang Huang, Tingting Wang, Maosheng Wang, MingQuan Ye\",\"doi\":\"10.1152/jn.00055.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is a hot problem in epilepsy research to detect and predict seizures by EEG signals. Clinically, it is generally observed that there are only sudden abnormal signals during the ictal stage, but there is no significant difference in the EEG signal between the interictal and preictal stages. To solve the problem that preictal signals are difficult to recognize clinically, and then effectively improve the recognition efficiency of epileptic seizures, so, in this paper, some nonlinear methods are comprehensively used to extract the hidden information in the EEG signals in different stages, namely, phase space reconstruction (PSR), Poincaré section (PS), synchroextracting transform (SET), and machine learning for EEG signal analysis. First, PSR based on C-C method is used, and the results show that there are different diffuse attractor trajectories of the signals in different stages. Second, the confidence ellipse (CE) is constructed by using the scatter diagram of the corresponding trajectory on PS, and the aspect ratio and area of the ellipse are calculated. The results show that there is an interesting transitional phenomenon in preictal stage. To recognize ictal and preictal signals, time-frequency (TF) spectrums, which are processed by SET, are fed into the convolutional neural network (CNN) classifier. The accuracy of recognizing ictal and preictal signals reaches 99.7% and 93.7%, respectively. To summarize, our results based on nonlinear method provide new research ideas for seizure detection and prediction.<b>NEW & NOTEWORTHY</b> Our results based on nonlinear method have better practical significance and clinical application value and improved the prediction efficiency of epileptic EEG signals effectively. This work provides direct insight into the application of these biomarkers for seizure detection and prediction.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00055.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00055.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过脑电信号检测和预测癫痫发作是癫痫研究中的一个热点问题。临床上一般只观察到发作期突然出现的异常信号,而发作间期和发作前的脑电信号并无明显差异。为了解决发作前信号在临床上难以识别的问题,进而有效提高癫痫发作的识别效率,本文综合运用了相空间重构(PSR)、Poincaré截面(PS)、同步提取变换(SET)和机器学习等非线性方法提取不同阶段脑电信号中的隐藏信息,用于脑电信号分析。首先,使用基于 C-C 方法的 PSR,结果表明不同阶段的信号存在不同的扩散吸引子轨迹。其次,利用 PS 上相应轨迹的散点图构建置信椭圆(CE),并计算椭圆的长宽比和面积。结果表明,在发作前阶段存在一个有趣的过渡现象。为了识别发作期和发作前信号,经 SET 处理的时频(TF)频谱被输入卷积神经网络(CNN)分类器。识别发作期和发作前信号的准确率分别达到 99.7% 和 93.7%。总之,我们基于非线性方法的研究成果为癫痫发作检测和预测提供了新的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear analysis and recognition of epileptic EEG signals in different stages.

It is a hot problem in epilepsy research to detect and predict seizures by EEG signals. Clinically, it is generally observed that there are only sudden abnormal signals during the ictal stage, but there is no significant difference in the EEG signal between the interictal and preictal stages. To solve the problem that preictal signals are difficult to recognize clinically, and then effectively improve the recognition efficiency of epileptic seizures, so, in this paper, some nonlinear methods are comprehensively used to extract the hidden information in the EEG signals in different stages, namely, phase space reconstruction (PSR), Poincaré section (PS), synchroextracting transform (SET), and machine learning for EEG signal analysis. First, PSR based on C-C method is used, and the results show that there are different diffuse attractor trajectories of the signals in different stages. Second, the confidence ellipse (CE) is constructed by using the scatter diagram of the corresponding trajectory on PS, and the aspect ratio and area of the ellipse are calculated. The results show that there is an interesting transitional phenomenon in preictal stage. To recognize ictal and preictal signals, time-frequency (TF) spectrums, which are processed by SET, are fed into the convolutional neural network (CNN) classifier. The accuracy of recognizing ictal and preictal signals reaches 99.7% and 93.7%, respectively. To summarize, our results based on nonlinear method provide new research ideas for seizure detection and prediction.NEW & NOTEWORTHY Our results based on nonlinear method have better practical significance and clinical application value and improved the prediction efficiency of epileptic EEG signals effectively. This work provides direct insight into the application of these biomarkers for seizure detection and prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信