{"title":"不同可得然掺入类型的肌纤维蛋白体外消化率和流变特性透视。","authors":"Shuai Jiang , Fan Mo , Qian Liu , Ling Jiang","doi":"10.1016/j.foodchem.2024.140255","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the effects of two forms of curdlan, namely curdlan thermoreversibility (CT) and curdlan powder (CP), on in vitro digestion and viscoelastic properties of myofibrillar protein (MP). As the level of curdlan (0.1–0.5%) increased, pepsin digestibility and pancreatin digestibility significantly decreased, active sulfhydryl group also decreased, while surface hydrophobicity and total sulfhydryl groups increased. Meanwhile, curdlan enhanced the secondary and tertiary structures of MP. As the pepsin digest, α-helix gradually transformed into random coil. Furthermore, the viscosity, storage modulus (<em>G\"</em>) and loss modulus (<em>G'</em>) increased with the CT or CP addition. After in vitro digestion, the viscoelasticity significantly decreased with a dose-response. Molecular dynamics simulations showed hydrogen bond formation (2.86 on average) between MP and curdlan contributing to reduced radius of gyration and solvent accessible surface area. Overall, this study highlighted curdlan as a promising ingredient to modulate structural properties and digestibility of MP, especially in pre-hydrated (CT) groups.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"459 ","pages":"Article 140255"},"PeriodicalIF":8.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the in vitro digestibility and rheology properties of myofibrillar protein with different incorporation types of curdlan\",\"authors\":\"Shuai Jiang , Fan Mo , Qian Liu , Ling Jiang\",\"doi\":\"10.1016/j.foodchem.2024.140255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the effects of two forms of curdlan, namely curdlan thermoreversibility (CT) and curdlan powder (CP), on in vitro digestion and viscoelastic properties of myofibrillar protein (MP). As the level of curdlan (0.1–0.5%) increased, pepsin digestibility and pancreatin digestibility significantly decreased, active sulfhydryl group also decreased, while surface hydrophobicity and total sulfhydryl groups increased. Meanwhile, curdlan enhanced the secondary and tertiary structures of MP. As the pepsin digest, α-helix gradually transformed into random coil. Furthermore, the viscosity, storage modulus (<em>G\\\"</em>) and loss modulus (<em>G'</em>) increased with the CT or CP addition. After in vitro digestion, the viscoelasticity significantly decreased with a dose-response. Molecular dynamics simulations showed hydrogen bond formation (2.86 on average) between MP and curdlan contributing to reduced radius of gyration and solvent accessible surface area. Overall, this study highlighted curdlan as a promising ingredient to modulate structural properties and digestibility of MP, especially in pre-hydrated (CT) groups.</p></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"459 \",\"pages\":\"Article 140255\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624019058\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624019058","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Insights into the in vitro digestibility and rheology properties of myofibrillar protein with different incorporation types of curdlan
This study investigated the effects of two forms of curdlan, namely curdlan thermoreversibility (CT) and curdlan powder (CP), on in vitro digestion and viscoelastic properties of myofibrillar protein (MP). As the level of curdlan (0.1–0.5%) increased, pepsin digestibility and pancreatin digestibility significantly decreased, active sulfhydryl group also decreased, while surface hydrophobicity and total sulfhydryl groups increased. Meanwhile, curdlan enhanced the secondary and tertiary structures of MP. As the pepsin digest, α-helix gradually transformed into random coil. Furthermore, the viscosity, storage modulus (G") and loss modulus (G') increased with the CT or CP addition. After in vitro digestion, the viscoelasticity significantly decreased with a dose-response. Molecular dynamics simulations showed hydrogen bond formation (2.86 on average) between MP and curdlan contributing to reduced radius of gyration and solvent accessible surface area. Overall, this study highlighted curdlan as a promising ingredient to modulate structural properties and digestibility of MP, especially in pre-hydrated (CT) groups.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.