{"title":"不同前驱体浓度下热化学气相沉积法在基底上生长和形成碳酸钙纳米晶","authors":"Nurul Hidah Sulimai, Salifairus Mohammad Jafar, Zuraida Khusaimi, Mohd. Firdaus Malek, Saifollah Abdullah, Mohamad Rusop Mahmood","doi":"10.1002/crat.202400051","DOIUrl":null,"url":null,"abstract":"<p>Recent observations of crystallization by thermal chemical vapor deposition systems indicate that the classical mechanism of nucleation and growth is followed. Information on aragonite nanocrystal growth and formation on substrate have been lacking due to the lack of reports on diffusional growth that can observe calcium carbonate nucleation processes in thin film formation. This report is important due to the additive-free method able to grow stable single-phase nanocrystals without the presence of other phases, amorphous or impurities. This work demonstrates homogeneous nucleation occurred in gas phase reaction in a constant flow of carbon dioxide gas (100 sccm) with optimally 0.5 <span>M</span> calcium chloride precursor in atmospheric pressure at 400 °C resulting in a calculated crystallite size of 27.8 nm. X-ray diffraction and energy dispersive spectrometer confirm the presence of calcium carbonate nanocrystal, whereas its structural changes are observed by its micrograph from field emission scanning electron microscope. The aim is to convey its importance in gaining control of aragonite nanocrystal morphology and structural properties, and thus generate nanocrystals with controlled phase. This work may contribute to development of more sensitive and crucial applications of calcium carbonate nanocrystal thin film such as in biosensors and biomedical.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium Carbonate Nanocrystal Growth and Formation on Substrate by Thermal Chemical Vapor Deposition at Different Pre-Cursor Concentration\",\"authors\":\"Nurul Hidah Sulimai, Salifairus Mohammad Jafar, Zuraida Khusaimi, Mohd. Firdaus Malek, Saifollah Abdullah, Mohamad Rusop Mahmood\",\"doi\":\"10.1002/crat.202400051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent observations of crystallization by thermal chemical vapor deposition systems indicate that the classical mechanism of nucleation and growth is followed. Information on aragonite nanocrystal growth and formation on substrate have been lacking due to the lack of reports on diffusional growth that can observe calcium carbonate nucleation processes in thin film formation. This report is important due to the additive-free method able to grow stable single-phase nanocrystals without the presence of other phases, amorphous or impurities. This work demonstrates homogeneous nucleation occurred in gas phase reaction in a constant flow of carbon dioxide gas (100 sccm) with optimally 0.5 <span>M</span> calcium chloride precursor in atmospheric pressure at 400 °C resulting in a calculated crystallite size of 27.8 nm. X-ray diffraction and energy dispersive spectrometer confirm the presence of calcium carbonate nanocrystal, whereas its structural changes are observed by its micrograph from field emission scanning electron microscope. The aim is to convey its importance in gaining control of aragonite nanocrystal morphology and structural properties, and thus generate nanocrystals with controlled phase. This work may contribute to development of more sensitive and crucial applications of calcium carbonate nanocrystal thin film such as in biosensors and biomedical.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"59 8\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400051\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400051","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
摘要
最近对热化学气相沉积系统结晶的观察表明,该系统遵循经典的成核和生长机制。由于缺乏能在薄膜形成过程中观察碳酸钙成核过程的扩散生长报告,有关文石纳米晶体生长和在基底上形成的信息一直很缺乏。本报告之所以重要,是因为它采用了无添加剂方法,能够生长出稳定的单相纳米晶体,而不存在其他相、非晶体或杂质。这项研究表明,在恒定流量的二氧化碳气体(100 sccm)和 0.5 M 氯化钙前驱体的气相反应中,在 400 °C 的大气压力下发生了均匀成核,计算得出的结晶尺寸为 27.8 nm。X 射线衍射和能量色散光谱仪证实了纳米碳酸钙晶体的存在,而通过场发射扫描电子显微镜的显微照片则观察到了其结构变化。这项研究的目的是要表达其在控制文石纳米晶体形态和结构特性方面的重要性,从而生成具有可控相位的纳米晶体。这项工作可能有助于开发碳酸钙纳米晶体薄膜更灵敏、更关键的应用,如生物传感器和生物医学。
Calcium Carbonate Nanocrystal Growth and Formation on Substrate by Thermal Chemical Vapor Deposition at Different Pre-Cursor Concentration
Recent observations of crystallization by thermal chemical vapor deposition systems indicate that the classical mechanism of nucleation and growth is followed. Information on aragonite nanocrystal growth and formation on substrate have been lacking due to the lack of reports on diffusional growth that can observe calcium carbonate nucleation processes in thin film formation. This report is important due to the additive-free method able to grow stable single-phase nanocrystals without the presence of other phases, amorphous or impurities. This work demonstrates homogeneous nucleation occurred in gas phase reaction in a constant flow of carbon dioxide gas (100 sccm) with optimally 0.5 M calcium chloride precursor in atmospheric pressure at 400 °C resulting in a calculated crystallite size of 27.8 nm. X-ray diffraction and energy dispersive spectrometer confirm the presence of calcium carbonate nanocrystal, whereas its structural changes are observed by its micrograph from field emission scanning electron microscope. The aim is to convey its importance in gaining control of aragonite nanocrystal morphology and structural properties, and thus generate nanocrystals with controlled phase. This work may contribute to development of more sensitive and crucial applications of calcium carbonate nanocrystal thin film such as in biosensors and biomedical.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing