从一个微生物库中筛选降解戊唑醇细菌的高通量方法。

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Ya-Peng Peng, Liang Ma, Ying Huang, Ming-He Mo, Jian-Jin Liu, Tong Liu
{"title":"从一个微生物库中筛选降解戊唑醇细菌的高通量方法。","authors":"Ya-Peng Peng, Liang Ma, Ying Huang, Ming-He Mo, Jian-Jin Liu, Tong Liu","doi":"10.1093/femsle/fnae052","DOIUrl":null,"url":null,"abstract":"<p><p>The extensive use of chemical pesticides, such as herbicides, has resulted in significant environmental pollution. Microbial degradation represents a crucial approach for managing this pesticide-associated pollution, with enrichment culturing serving as a method for isolating pesticide-degrading microorganisms. However, the efficiency of this strategy is limited, often yielding only a few isolated strains. In this study, a new mineral salt medium (MSM) was developed, and a high-throughput method was used for screening pendimethalin-degrading bacteria by measuring the bacterial growth in the MSM. The utilization of this method resulted in the isolation of 56 pendimethalin-degrading bacteria from approximately 2000 bacterial strains, including 37 Bacillus spp., 10 Alcaligenes spp., 5 Pseudomonas spp., and other 4 strains identified for the first time as pendimethalin-degrading strains. This method may hold promise not only for isolating bacterial strains capable of degrading other pesticides but also for facilitating the utilization of the substantial bacterial strains stored in bacterial banks.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput method for screening pendimethalin-degrading bacteria from one microbial bank.\",\"authors\":\"Ya-Peng Peng, Liang Ma, Ying Huang, Ming-He Mo, Jian-Jin Liu, Tong Liu\",\"doi\":\"10.1093/femsle/fnae052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The extensive use of chemical pesticides, such as herbicides, has resulted in significant environmental pollution. Microbial degradation represents a crucial approach for managing this pesticide-associated pollution, with enrichment culturing serving as a method for isolating pesticide-degrading microorganisms. However, the efficiency of this strategy is limited, often yielding only a few isolated strains. In this study, a new mineral salt medium (MSM) was developed, and a high-throughput method was used for screening pendimethalin-degrading bacteria by measuring the bacterial growth in the MSM. The utilization of this method resulted in the isolation of 56 pendimethalin-degrading bacteria from approximately 2000 bacterial strains, including 37 Bacillus spp., 10 Alcaligenes spp., 5 Pseudomonas spp., and other 4 strains identified for the first time as pendimethalin-degrading strains. This method may hold promise not only for isolating bacterial strains capable of degrading other pesticides but also for facilitating the utilization of the substantial bacterial strains stored in bacterial banks.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae052\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae052","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

除草剂等化学农药的广泛使用造成了严重的环境污染。微生物降解是治理农药相关污染的重要方法,富集培养是分离农药降解微生物的一种方法。然而,这种策略的效率有限,往往只能分离出少数菌株。本研究开发了一种新的矿物盐培养基(MSM),并采用一种高通量方法,通过测量细菌在 MSM 中的生长情况来筛选降解戊唑醇的细菌。利用这种方法,从大约 2 000 株细菌中分离出了 56 株降解戊唑醇的细菌,其中包括 37 株枯草芽孢杆菌属、10 株阿尔卡利根菌属、5 株假单胞菌属,以及其他 4 株首次被鉴定为降解戊唑醇的细菌。这种方法不仅有望分离出能够降解其他农药的细菌菌株,还能促进对细菌库中储存的大量细菌菌株的利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-throughput method for screening pendimethalin-degrading bacteria from one microbial bank.

The extensive use of chemical pesticides, such as herbicides, has resulted in significant environmental pollution. Microbial degradation represents a crucial approach for managing this pesticide-associated pollution, with enrichment culturing serving as a method for isolating pesticide-degrading microorganisms. However, the efficiency of this strategy is limited, often yielding only a few isolated strains. In this study, a new mineral salt medium (MSM) was developed, and a high-throughput method was used for screening pendimethalin-degrading bacteria by measuring the bacterial growth in the MSM. The utilization of this method resulted in the isolation of 56 pendimethalin-degrading bacteria from approximately 2000 bacterial strains, including 37 Bacillus spp., 10 Alcaligenes spp., 5 Pseudomonas spp., and other 4 strains identified for the first time as pendimethalin-degrading strains. This method may hold promise not only for isolating bacterial strains capable of degrading other pesticides but also for facilitating the utilization of the substantial bacterial strains stored in bacterial banks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信