采用氮化镓纳米线 ni-i-n 二极管的高性能紫外机器视觉系统

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Haitao Du;Yu Zhang;Junmin Zhou;Jiaxiang Chen;Wenbo Ye;Xu Zhang;Qifeng Lyu;Hongzhi Wang;Kei May Lau;Xinbo Zou
{"title":"采用氮化镓纳米线 ni-i-n 二极管的高性能紫外机器视觉系统","authors":"Haitao Du;Yu Zhang;Junmin Zhou;Jiaxiang Chen;Wenbo Ye;Xu Zhang;Qifeng Lyu;Hongzhi Wang;Kei May Lau;Xinbo Zou","doi":"10.1109/TNANO.2024.3416509","DOIUrl":null,"url":null,"abstract":"Machine vision as an essential component of artificial intelligence poses a significant influence on dimension measurement, quality control, autonomous driving, and so on. In this study, a high-performance ultraviolet (UV) imaging and detection system enabled by Gallium Nitride (GaN) nanowire (NW) n-i-n photodetector (PD) is presented. Based on supreme optoelectronic properties of the NW, including high responsivity of 5098 A/W, a low dark current of 4.88 pA and a photo-to-dark current ratio of 1223, machine vision system composed of a GaN NW array could achieve an accuracy of 96.21%. Furthermore, feasibility of artificial neural network (ANN) and convolutional neural network (CNN) in such a machine vision system is discussed, featuring dim and noisy environment. The visualization process shows that the superiority of CNN over ANN in image recognition is attributed to the capability of extracting spatial information and characteristics. The research results provide important insight into the development of both sensors and algorithms for machine vision systems based on GaN NW PD, inspiring further investigation into UV image detection and other areas of artificial intelligence.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"529-534"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GaN Nanowire n-i-n Diode Enabled High-Performance UV Machine Vision System\",\"authors\":\"Haitao Du;Yu Zhang;Junmin Zhou;Jiaxiang Chen;Wenbo Ye;Xu Zhang;Qifeng Lyu;Hongzhi Wang;Kei May Lau;Xinbo Zou\",\"doi\":\"10.1109/TNANO.2024.3416509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine vision as an essential component of artificial intelligence poses a significant influence on dimension measurement, quality control, autonomous driving, and so on. In this study, a high-performance ultraviolet (UV) imaging and detection system enabled by Gallium Nitride (GaN) nanowire (NW) n-i-n photodetector (PD) is presented. Based on supreme optoelectronic properties of the NW, including high responsivity of 5098 A/W, a low dark current of 4.88 pA and a photo-to-dark current ratio of 1223, machine vision system composed of a GaN NW array could achieve an accuracy of 96.21%. Furthermore, feasibility of artificial neural network (ANN) and convolutional neural network (CNN) in such a machine vision system is discussed, featuring dim and noisy environment. The visualization process shows that the superiority of CNN over ANN in image recognition is attributed to the capability of extracting spatial information and characteristics. The research results provide important insight into the development of both sensors and algorithms for machine vision systems based on GaN NW PD, inspiring further investigation into UV image detection and other areas of artificial intelligence.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"529-534\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10564119/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10564119/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

机器视觉作为人工智能的重要组成部分,在尺寸测量、质量控制、自动驾驶等方面具有重要影响。本研究提出了一种由氮化镓(GaN)纳米线(NW)n-i-n 光电探测器(PD)实现的高性能紫外线(UV)成像和检测系统。基于氮化镓纳米线的最高光电特性,包括 5098 A/W 的高响应率、4.88 pA 的低暗电流和 1223 的光暗电流比,由氮化镓纳米线阵列组成的机器视觉系统可实现 96.21% 的精确度。此外,还讨论了人工神经网络(ANN)和卷积神经网络(CNN)在这种机器视觉系统中的可行性。可视化过程表明,在图像识别方面,CNN 优于 ANN 的原因在于其提取空间信息和特征的能力。这些研究成果为基于氮化镓氮化瓦 PD 的机器视觉系统的传感器和算法的开发提供了重要启示,激发了对紫外图像检测和其他人工智能领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GaN Nanowire n-i-n Diode Enabled High-Performance UV Machine Vision System
Machine vision as an essential component of artificial intelligence poses a significant influence on dimension measurement, quality control, autonomous driving, and so on. In this study, a high-performance ultraviolet (UV) imaging and detection system enabled by Gallium Nitride (GaN) nanowire (NW) n-i-n photodetector (PD) is presented. Based on supreme optoelectronic properties of the NW, including high responsivity of 5098 A/W, a low dark current of 4.88 pA and a photo-to-dark current ratio of 1223, machine vision system composed of a GaN NW array could achieve an accuracy of 96.21%. Furthermore, feasibility of artificial neural network (ANN) and convolutional neural network (CNN) in such a machine vision system is discussed, featuring dim and noisy environment. The visualization process shows that the superiority of CNN over ANN in image recognition is attributed to the capability of extracting spatial information and characteristics. The research results provide important insight into the development of both sensors and algorithms for machine vision systems based on GaN NW PD, inspiring further investigation into UV image detection and other areas of artificial intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信