NaOH 溶液表面处理对 Al2O3/β-Ga2O3 MOS 电容器的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Paiwen Fang, Zhengyi Liao, Danni Su, Jun Liang, Xinzhong Wang and Yanli Pei
{"title":"NaOH 溶液表面处理对 Al2O3/β-Ga2O3 MOS 电容器的影响","authors":"Paiwen Fang, Zhengyi Liao, Danni Su, Jun Liang, Xinzhong Wang and Yanli Pei","doi":"10.1088/1361-6641/ad59bc","DOIUrl":null,"url":null,"abstract":"A suitable semiconductor surface treatment could improve the gate dielectric quality and reduce the interface states and traps to enhance the performance of metal–oxide semiconductor capacitors (MOSCAPs). In this paper, β-Ga2O3 surface treatment using NaOH solution prior to atomic layer deposition of Al2O3 was investigated. In comparison with piranha pretreatment, MOSCAPs with NaOH solution surface pretreatment show a larger maximum accumulation capacitance with less frequency dispersion, reduced charges/traps and interface state density Dit. The improvement in MOSCAPs performance could be attributed to the NaOH solution pretreatment induced slight surface etching effect and relatively effective hydroxylation surface. These results suggest that the process optimization of NaOH solution surface pretreatment could lead to further improvement of β-Ga2O3 MOSCAPs and have a potential in application of β-Ga2O3 metal–oxide semiconductor field-effect transistors in the future.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of NaOH solution surface treatment on Al2O3/β-Ga2O3 MOS capacitors\",\"authors\":\"Paiwen Fang, Zhengyi Liao, Danni Su, Jun Liang, Xinzhong Wang and Yanli Pei\",\"doi\":\"10.1088/1361-6641/ad59bc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A suitable semiconductor surface treatment could improve the gate dielectric quality and reduce the interface states and traps to enhance the performance of metal–oxide semiconductor capacitors (MOSCAPs). In this paper, β-Ga2O3 surface treatment using NaOH solution prior to atomic layer deposition of Al2O3 was investigated. In comparison with piranha pretreatment, MOSCAPs with NaOH solution surface pretreatment show a larger maximum accumulation capacitance with less frequency dispersion, reduced charges/traps and interface state density Dit. The improvement in MOSCAPs performance could be attributed to the NaOH solution pretreatment induced slight surface etching effect and relatively effective hydroxylation surface. These results suggest that the process optimization of NaOH solution surface pretreatment could lead to further improvement of β-Ga2O3 MOSCAPs and have a potential in application of β-Ga2O3 metal–oxide semiconductor field-effect transistors in the future.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad59bc\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad59bc","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合适的半导体表面处理可以改善栅极介电质量,减少界面态和陷阱,从而提高金属氧化物半导体电容器(MOSCAP)的性能。本文研究了在原子层沉积 Al2O3 之前使用 NaOH 溶液对 β-Ga2O3 进行表面处理的方法。与食人鱼预处理相比,经过 NaOH 溶液表面预处理的 MOSCAP 显示出更大的最大累积电容、更小的频率分散、更少的电荷/陷阱和界面态密度 Dit。MOSCAP 性能的提高可归因于 NaOH 溶液预处理引起的轻微表面蚀刻效应和相对有效的羟基化表面。这些结果表明,NaOH 溶液表面预处理工艺的优化可进一步提高 β-Ga2O3 MOSCAP 的性能,并有望在未来的 β-Ga2O3 金属氧化物半导体场效应晶体管中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of NaOH solution surface treatment on Al2O3/β-Ga2O3 MOS capacitors
A suitable semiconductor surface treatment could improve the gate dielectric quality and reduce the interface states and traps to enhance the performance of metal–oxide semiconductor capacitors (MOSCAPs). In this paper, β-Ga2O3 surface treatment using NaOH solution prior to atomic layer deposition of Al2O3 was investigated. In comparison with piranha pretreatment, MOSCAPs with NaOH solution surface pretreatment show a larger maximum accumulation capacitance with less frequency dispersion, reduced charges/traps and interface state density Dit. The improvement in MOSCAPs performance could be attributed to the NaOH solution pretreatment induced slight surface etching effect and relatively effective hydroxylation surface. These results suggest that the process optimization of NaOH solution surface pretreatment could lead to further improvement of β-Ga2O3 MOSCAPs and have a potential in application of β-Ga2O3 metal–oxide semiconductor field-effect transistors in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信