论具有强互易特征值特性的非双面图

IF 1 3区 数学 Q1 MATHEMATICS
Sasmita Barik , Rajiv Mishra , Sukanta Pati
{"title":"论具有强互易特征值特性的非双面图","authors":"Sasmita Barik ,&nbsp;Rajiv Mishra ,&nbsp;Sukanta Pati","doi":"10.1016/j.laa.2024.06.023","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a simple connected graph and <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the adjacency matrix of <em>G</em>. A diagonal matrix with diagonal entries ±1 is called a signature matrix. If <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is nonsingular and <span><math><mi>X</mi><mo>=</mo><mi>S</mi><mi>A</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> is entrywise nonnegative for some signature matrix <em>S</em>, then <em>X</em> can be viewed as the adjacency matrix of a unique weighted graph. It is called the inverse of <em>G</em>, denoted by <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>. A graph <em>G</em> is said to have the reciprocal eigenvalue property (property(R)) if <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is nonsingular, and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>λ</mi></mrow></mfrac></math></span> is an eigenvalue of <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> whenever <em>λ</em> is an eigenvalue of <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Further, if <em>λ</em> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>λ</mi></mrow></mfrac></math></span> have the same multiplicity for each eigenvalue <em>λ</em>, then <em>G</em> is said to have the strong reciprocal eigenvalue property (property (SR)). It is known that for a tree <em>T</em>, the following conditions are equivalent: a) <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is isomorphic to <em>T</em>, b) <em>T</em> has property (R), c) <em>T</em> has property (SR) and d) <em>T</em> is a corona tree (it is a tree which is obtained from another tree by adding a new pendant at each vertex).</p><p>Studies on the inverses, property (R) and property (SR) of bipartite graphs are available in the literature. However, their studies for the non-bipartite graphs are rarely done. In this article, we study the inverse and property (SR) for non-bipartite graphs. We first introduce an operation, which helps us to study the inverses of non-bipartite graphs. As a consequence, we supply a class of non-bipartite graphs for which the inverse graph <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> exists and <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is isomorphic to <em>G</em>. It follows that each graph <em>G</em> in this class has property (SR).</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On non-bipartite graphs with strong reciprocal eigenvalue property\",\"authors\":\"Sasmita Barik ,&nbsp;Rajiv Mishra ,&nbsp;Sukanta Pati\",\"doi\":\"10.1016/j.laa.2024.06.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>G</em> be a simple connected graph and <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the adjacency matrix of <em>G</em>. A diagonal matrix with diagonal entries ±1 is called a signature matrix. If <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is nonsingular and <span><math><mi>X</mi><mo>=</mo><mi>S</mi><mi>A</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> is entrywise nonnegative for some signature matrix <em>S</em>, then <em>X</em> can be viewed as the adjacency matrix of a unique weighted graph. It is called the inverse of <em>G</em>, denoted by <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>. A graph <em>G</em> is said to have the reciprocal eigenvalue property (property(R)) if <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is nonsingular, and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>λ</mi></mrow></mfrac></math></span> is an eigenvalue of <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> whenever <em>λ</em> is an eigenvalue of <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Further, if <em>λ</em> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>λ</mi></mrow></mfrac></math></span> have the same multiplicity for each eigenvalue <em>λ</em>, then <em>G</em> is said to have the strong reciprocal eigenvalue property (property (SR)). It is known that for a tree <em>T</em>, the following conditions are equivalent: a) <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is isomorphic to <em>T</em>, b) <em>T</em> has property (R), c) <em>T</em> has property (SR) and d) <em>T</em> is a corona tree (it is a tree which is obtained from another tree by adding a new pendant at each vertex).</p><p>Studies on the inverses, property (R) and property (SR) of bipartite graphs are available in the literature. However, their studies for the non-bipartite graphs are rarely done. In this article, we study the inverse and property (SR) for non-bipartite graphs. We first introduce an operation, which helps us to study the inverses of non-bipartite graphs. As a consequence, we supply a class of non-bipartite graphs for which the inverse graph <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> exists and <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is isomorphic to <em>G</em>. It follows that each graph <em>G</em> in this class has property (SR).</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002775\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002775","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 是一个简单连通图, 是 的邻接矩阵。 对角线项为 ±1 的对角矩阵称为签名矩阵。如果 对于某个签名矩阵 , 是非奇数且入口为非负,那么可以将其视为唯一加权图的邻接矩阵。它被称为 , 的逆矩阵,用表示。此外,如果 和 对每个特征值都具有相同的倍率,则称该图具有强互易特征值属性(属性 (SR))。众所周知,对于一棵树 , 以下条件是等价的:a) 与 , 同构;b) 具有属性 (R);c) 具有属性 (SR);d) 是一棵日冕树(这是一棵从另一棵树通过在每个顶点添加一个新垂点而得到的树)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On non-bipartite graphs with strong reciprocal eigenvalue property

Let G be a simple connected graph and A(G) be the adjacency matrix of G. A diagonal matrix with diagonal entries ±1 is called a signature matrix. If A(G) is nonsingular and X=SA(G)1S1 is entrywise nonnegative for some signature matrix S, then X can be viewed as the adjacency matrix of a unique weighted graph. It is called the inverse of G, denoted by G+. A graph G is said to have the reciprocal eigenvalue property (property(R)) if A(G) is nonsingular, and 1λ is an eigenvalue of A(G) whenever λ is an eigenvalue of A(G). Further, if λ and 1λ have the same multiplicity for each eigenvalue λ, then G is said to have the strong reciprocal eigenvalue property (property (SR)). It is known that for a tree T, the following conditions are equivalent: a) T+ is isomorphic to T, b) T has property (R), c) T has property (SR) and d) T is a corona tree (it is a tree which is obtained from another tree by adding a new pendant at each vertex).

Studies on the inverses, property (R) and property (SR) of bipartite graphs are available in the literature. However, their studies for the non-bipartite graphs are rarely done. In this article, we study the inverse and property (SR) for non-bipartite graphs. We first introduce an operation, which helps us to study the inverses of non-bipartite graphs. As a consequence, we supply a class of non-bipartite graphs for which the inverse graph G+ exists and G+ is isomorphic to G. It follows that each graph G in this class has property (SR).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信