具有共线性的变量误差回归模型的截断奇异值分解估计器的强一致性

IF 1 3区 数学 Q1 MATHEMATICS
Kensuke Aishima
{"title":"具有共线性的变量误差回归模型的截断奇异值分解估计器的强一致性","authors":"Kensuke Aishima","doi":"10.1016/j.laa.2024.06.024","DOIUrl":null,"url":null,"abstract":"In this paper, we prove strong consistency of an estimator by the truncated singular value decomposition for a multivariate errors-in-variables linear regression model with collinearity. This result is an extension of Gleser's proof of the strong consistency of total least squares solutions to the case with modern rank constraints. While the usual discussion of consistency in the absence of solution uniqueness deals with the minimal norm solution, the contribution of this study is to develop a theory that shows the strong consistency of a set of solutions. The proof is based on properties of orthogonal projections, specifically properties of the Rayleigh-Ritz procedure for computing eigenvalues. This makes it suitable for targeting problems where some row vectors of the matrices do not contain noise. Therefore, this paper gives a proof for the regression model with the above condition on the row vectors, resulting in a natural generalization of the strong consistency for the standard TLS estimator.","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong consistency of an estimator by the truncated singular value decomposition for an errors-in-variables regression model with collinearity\",\"authors\":\"Kensuke Aishima\",\"doi\":\"10.1016/j.laa.2024.06.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove strong consistency of an estimator by the truncated singular value decomposition for a multivariate errors-in-variables linear regression model with collinearity. This result is an extension of Gleser's proof of the strong consistency of total least squares solutions to the case with modern rank constraints. While the usual discussion of consistency in the absence of solution uniqueness deals with the minimal norm solution, the contribution of this study is to develop a theory that shows the strong consistency of a set of solutions. The proof is based on properties of orthogonal projections, specifically properties of the Rayleigh-Ritz procedure for computing eigenvalues. This makes it suitable for targeting problems where some row vectors of the matrices do not contain noise. Therefore, this paper gives a proof for the regression model with the above condition on the row vectors, resulting in a natural generalization of the strong consistency for the standard TLS estimator.\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.laa.2024.06.024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.laa.2024.06.024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过截断奇异值分解证明了具有共线性的多元变量误差线性回归模型估计器的强一致性。这一结果是 Gleser 对全最小二乘法解的强一致性证明的扩展,适用于有现代秩约束的情况。通常对无解唯一性情况下一致性的讨论涉及最小规范解,而本研究的贡献在于发展了一种理论,证明了一组解的强一致性。该证明基于正交投影的特性,特别是计算特征值的 Rayleigh-Ritz 程序的特性。这使得它适用于针对矩阵的某些行向量不包含噪声的问题。因此,本文给出了具有上述行向量条件的回归模型的证明,从而自然地概括了标准 TLS 估计器的强一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong consistency of an estimator by the truncated singular value decomposition for an errors-in-variables regression model with collinearity
In this paper, we prove strong consistency of an estimator by the truncated singular value decomposition for a multivariate errors-in-variables linear regression model with collinearity. This result is an extension of Gleser's proof of the strong consistency of total least squares solutions to the case with modern rank constraints. While the usual discussion of consistency in the absence of solution uniqueness deals with the minimal norm solution, the contribution of this study is to develop a theory that shows the strong consistency of a set of solutions. The proof is based on properties of orthogonal projections, specifically properties of the Rayleigh-Ritz procedure for computing eigenvalues. This makes it suitable for targeting problems where some row vectors of the matrices do not contain noise. Therefore, this paper gives a proof for the regression model with the above condition on the row vectors, resulting in a natural generalization of the strong consistency for the standard TLS estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信