无限上三角二次矩阵的乘积

IF 1 3区 数学 Q1 MATHEMATICS
M.H. Bien , V.M. Tam , D.C.M. Tri , L.Q. Truong
{"title":"无限上三角二次矩阵的乘积","authors":"M.H. Bien ,&nbsp;V.M. Tam ,&nbsp;D.C.M. Tri ,&nbsp;L.Q. Truong","doi":"10.1016/j.laa.2024.06.021","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>F</em> be a field and <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> a quadratic polynomial in <span><math><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> with <span><math><mi>q</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>≠</mo><mn>0</mn></math></span>. We denote by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> the algebra of all infinite upper triangular matrices over the field <em>F</em>. A matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is called a quadratic matrix with respect to <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> if <span><math><mi>q</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. In this paper, we first investigate the subgroup in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> generated by all quadratic matrices with respect to <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and then present some applications.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products of infinite upper triangular quadratic matrices\",\"authors\":\"M.H. Bien ,&nbsp;V.M. Tam ,&nbsp;D.C.M. Tri ,&nbsp;L.Q. Truong\",\"doi\":\"10.1016/j.laa.2024.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>F</em> be a field and <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> a quadratic polynomial in <span><math><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> with <span><math><mi>q</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>≠</mo><mn>0</mn></math></span>. We denote by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> the algebra of all infinite upper triangular matrices over the field <em>F</em>. A matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is called a quadratic matrix with respect to <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> if <span><math><mi>q</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. In this paper, we first investigate the subgroup in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> generated by all quadratic matrices with respect to <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and then present some applications.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002751\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002751","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 是一个域,是与 的二次多项式。我们用 场上所有无限上三角矩阵的代数表示 .如果符合条件,矩阵称为关于 的二次矩阵。在本文中,我们首先研究由所有关于 的二次矩阵生成的子群,然后介绍一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products of infinite upper triangular quadratic matrices

Let F be a field and q(x) a quadratic polynomial in F[x] with q(0)0. We denote by T(F) the algebra of all infinite upper triangular matrices over the field F. A matrix AT(F) is called a quadratic matrix with respect to q(x) if q(A)=0. In this paper, we first investigate the subgroup in T(F) generated by all quadratic matrices with respect to q(x) and then present some applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信