{"title":"无限上三角二次矩阵的乘积","authors":"M.H. Bien , V.M. Tam , D.C.M. Tri , L.Q. Truong","doi":"10.1016/j.laa.2024.06.021","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>F</em> be a field and <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> a quadratic polynomial in <span><math><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> with <span><math><mi>q</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>≠</mo><mn>0</mn></math></span>. We denote by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> the algebra of all infinite upper triangular matrices over the field <em>F</em>. A matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is called a quadratic matrix with respect to <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> if <span><math><mi>q</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. In this paper, we first investigate the subgroup in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> generated by all quadratic matrices with respect to <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and then present some applications.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products of infinite upper triangular quadratic matrices\",\"authors\":\"M.H. Bien , V.M. Tam , D.C.M. Tri , L.Q. Truong\",\"doi\":\"10.1016/j.laa.2024.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>F</em> be a field and <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> a quadratic polynomial in <span><math><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> with <span><math><mi>q</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>≠</mo><mn>0</mn></math></span>. We denote by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> the algebra of all infinite upper triangular matrices over the field <em>F</em>. A matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is called a quadratic matrix with respect to <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> if <span><math><mi>q</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. In this paper, we first investigate the subgroup in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> generated by all quadratic matrices with respect to <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and then present some applications.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002751\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002751","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Products of infinite upper triangular quadratic matrices
Let F be a field and a quadratic polynomial in with . We denote by the algebra of all infinite upper triangular matrices over the field F. A matrix is called a quadratic matrix with respect to if . In this paper, we first investigate the subgroup in generated by all quadratic matrices with respect to and then present some applications.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.