{"title":"基于铁电隧道场效应晶体管的信号处理应用","authors":"Been Kwak;Daewoong Kwon;Hyunwoo Kim","doi":"10.1109/TNANO.2024.3421263","DOIUrl":null,"url":null,"abstract":"This study introduces a ferroelectric tunnel field-effect transistor (Fe-TFET) capable of implementing three types of signal processing for frequency doubler, phase shifter, and signal follower. In addition, we verify its I/O characteristics using technology computer-aided design simulations. The proposed Fe-TFET has bidirectional tunneling currents as an inherent TFET characteristic, and the ferroelectric layer's polarization adjusts the device's threshold voltage (\n<italic>V</i>\n<sub>TH</sub>\n). Depending on the degree of polarization by program voltage, the device operating within the input signal range of −0.5 to 0.5 V can be determined by the following current components: 1) source-to-channel tunneling current \n<italic>(I</i>\n<sub>SC</sub>\n), 2) channel-to-drain currents (\n<italic>I</i>\n<sub>CD</sub>\n), and 3) \n<italic>I</i>\n<sub>SC</sub>\n and \n<italic>I</i>\n<sub>CD</sub>\n. Then, through the mixed-mode circuit simulations, the I/O characteristics from each program condition are confirmed with 1) frequency doubler, 2) phase shifter, and 3) signal follower characteristics using a single Fe-TFET-based circuit. In addition, an investigation of the impact of frequency variations on the three modes reveals no attenuations in output signals. Consequently, the simple configuration and low power consumption, as opposed to conventional signal processing circuit, make the proposed processing method more suitable for analog circuit design.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal-Processing Application Based on Ferroelectric Tunnel Field-Effect Transistor\",\"authors\":\"Been Kwak;Daewoong Kwon;Hyunwoo Kim\",\"doi\":\"10.1109/TNANO.2024.3421263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a ferroelectric tunnel field-effect transistor (Fe-TFET) capable of implementing three types of signal processing for frequency doubler, phase shifter, and signal follower. In addition, we verify its I/O characteristics using technology computer-aided design simulations. The proposed Fe-TFET has bidirectional tunneling currents as an inherent TFET characteristic, and the ferroelectric layer's polarization adjusts the device's threshold voltage (\\n<italic>V</i>\\n<sub>TH</sub>\\n). Depending on the degree of polarization by program voltage, the device operating within the input signal range of −0.5 to 0.5 V can be determined by the following current components: 1) source-to-channel tunneling current \\n<italic>(I</i>\\n<sub>SC</sub>\\n), 2) channel-to-drain currents (\\n<italic>I</i>\\n<sub>CD</sub>\\n), and 3) \\n<italic>I</i>\\n<sub>SC</sub>\\n and \\n<italic>I</i>\\n<sub>CD</sub>\\n. Then, through the mixed-mode circuit simulations, the I/O characteristics from each program condition are confirmed with 1) frequency doubler, 2) phase shifter, and 3) signal follower characteristics using a single Fe-TFET-based circuit. In addition, an investigation of the impact of frequency variations on the three modes reveals no attenuations in output signals. Consequently, the simple configuration and low power consumption, as opposed to conventional signal processing circuit, make the proposed processing method more suitable for analog circuit design.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579039/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10579039/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Signal-Processing Application Based on Ferroelectric Tunnel Field-Effect Transistor
This study introduces a ferroelectric tunnel field-effect transistor (Fe-TFET) capable of implementing three types of signal processing for frequency doubler, phase shifter, and signal follower. In addition, we verify its I/O characteristics using technology computer-aided design simulations. The proposed Fe-TFET has bidirectional tunneling currents as an inherent TFET characteristic, and the ferroelectric layer's polarization adjusts the device's threshold voltage (
V
TH
). Depending on the degree of polarization by program voltage, the device operating within the input signal range of −0.5 to 0.5 V can be determined by the following current components: 1) source-to-channel tunneling current
(I
SC
), 2) channel-to-drain currents (
I
CD
), and 3)
I
SC
and
I
CD
. Then, through the mixed-mode circuit simulations, the I/O characteristics from each program condition are confirmed with 1) frequency doubler, 2) phase shifter, and 3) signal follower characteristics using a single Fe-TFET-based circuit. In addition, an investigation of the impact of frequency variations on the three modes reveals no attenuations in output signals. Consequently, the simple configuration and low power consumption, as opposed to conventional signal processing circuit, make the proposed processing method more suitable for analog circuit design.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.