KS-WNK1的缺失会通过增加WNK1/4的丰度来促进NCC的激活。

Mohammed Z Ferdaus, Andrew S Terker, Rainelli B Koumangoye, Lama Al-Qusairi, Paul A Welling, Eric Delpire
{"title":"KS-WNK1的缺失会通过增加WNK1/4的丰度来促进NCC的激活。","authors":"Mohammed Z Ferdaus, Andrew S Terker, Rainelli B Koumangoye, Lama Al-Qusairi, Paul A Welling, Eric Delpire","doi":"10.1152/ajprenal.00101.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K<sup>+</sup> levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K<sup>+</sup> channels (Kir4.1/5.1); decrease in intracellular Cl<sup>-</sup>; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K<sup>+</sup> conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K<sup>+</sup> diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K<sup>+</sup>. We also show that under low K<sup>+</sup> conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.<b>NEW & NOTEWORTHY</b> In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K<sup>+</sup> switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F373-F385"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance.\",\"authors\":\"Mohammed Z Ferdaus, Andrew S Terker, Rainelli B Koumangoye, Lama Al-Qusairi, Paul A Welling, Eric Delpire\",\"doi\":\"10.1152/ajprenal.00101.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K<sup>+</sup> levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K<sup>+</sup> channels (Kir4.1/5.1); decrease in intracellular Cl<sup>-</sup>; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K<sup>+</sup> conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K<sup>+</sup> diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K<sup>+</sup>. We also show that under low K<sup>+</sup> conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.<b>NEW & NOTEWORTHY</b> In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K<sup>+</sup> switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.</p>\",\"PeriodicalId\":93867,\"journal\":{\"name\":\"American journal of physiology. Renal physiology\",\"volume\":\" \",\"pages\":\"F373-F385\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Renal physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/ajprenal.00101.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00101.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

饮食中缺钾会刺激钠的重吸收,从而增加血压升高的风险。远端曲小管是连接血浆 K+ 水平与 Na-Cl 共转运体(NCC)活性的主要调节器。这是通过 Kir4.1/5.1 的基底侧膜电位感应、细胞内 Cl- 的减少、WNK4 的激活、Ste20/SPS1 相关富脯氨酸/丙氨酸激酶(SPAK)的相互作用和磷酸化、钙结合蛋白 39(cab39)适配蛋白与 SPAK 的结合导致其迁移到顶端膜,以及 SPAK 与 NCC 的结合、磷酸化和激活而实现的。肾脏特异性赖氨酸(K)激酶1(WNK1)同工酶(KS-WNK1)是该通路的另一个参与者,因此我们研究了它在NCC调控中的功能。我们特异性地消除了 DCT 中的 KS-WNK1,结果表明 WNK4 和 L-WNK1 的表达增加,NCC 的磷酸化增加。与其他 KS-WNK1 模型一样,这些小鼠没有高血钾症。虽然野生型小鼠在低 K+饮食条件下表现出 NCC 磷酸化增加,但 KS-WNK1 中已经很高的转运体磷酸化水平在低 K+饮食条件下没有变化。因此,在 KS-WNK1 缺失的情况下,转运体失去了对低血浆 K+ 的敏感性。我们还发现,在低 K+条件下,如果没有 KS-WNK1,就不会形成 WNK 体。在不受 KS-WNK1 靶向影响的相邻区段也能观察到 WNK 体。由于我们的数据与 KS-WNK1 整体敲除的数据总体上一致,它们表明 DCT 是影响 KS-WNK1 盐转运的主要区段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance.

Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K+ channels (Kir4.1/5.1); decrease in intracellular Cl-; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K+ diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.NEW & NOTEWORTHY In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K+ switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信