深度学习模型可准确预测 1 年死亡率,但存在不公平的风险。

IF 17 Q1 CELL BIOLOGY
{"title":"深度学习模型可准确预测 1 年死亡率,但存在不公平的风险。","authors":"","doi":"10.1038/s43587-024-00665-5","DOIUrl":null,"url":null,"abstract":"A deep learning model accurately predicts 1-year mortality for the entire Finnish population. Despite robust performance and potential as a digital marker of aging, fairness analyses reveal prediction disparities, so integration into public health should be approached cautiously.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"4 7","pages":"913-914"},"PeriodicalIF":17.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning model accurately predicts 1-year mortality but at the risk of unfairness\",\"authors\":\"\",\"doi\":\"10.1038/s43587-024-00665-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep learning model accurately predicts 1-year mortality for the entire Finnish population. Despite robust performance and potential as a digital marker of aging, fairness analyses reveal prediction disparities, so integration into public health should be approached cautiously.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"4 7\",\"pages\":\"913-914\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-024-00665-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00665-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型能准确预测芬兰全国人口的一年死亡率。尽管该模型具有强大的性能和作为老龄化数字标记的潜力,但公平性分析显示预测结果存在差异,因此应谨慎将其纳入公共卫生领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A deep learning model accurately predicts 1-year mortality but at the risk of unfairness

A deep learning model accurately predicts 1-year mortality but at the risk of unfairness

A deep learning model accurately predicts 1-year mortality but at the risk of unfairness
A deep learning model accurately predicts 1-year mortality for the entire Finnish population. Despite robust performance and potential as a digital marker of aging, fairness analyses reveal prediction disparities, so integration into public health should be approached cautiously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信