腰椎磁共振图像自动分割的定量评估

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY
Neurospine Pub Date : 2024-06-01 Epub Date: 2024-06-30 DOI:10.14245/ns.2448060.030
Yao-Wen Liang, Yu-Ting Fang, Ting-Chun Lin, Cheng-Ru Yang, Chih-Chang Chang, Hsuan-Kan Chang, Chin-Chu Ko, Tsung-Hsi Tu, Li-Yu Fay, Jau-Ching Wu, Wen-Cheng Huang, Hsiang-Wei Hu, You-Yin Chen, Chao-Hung Kuo
{"title":"腰椎磁共振图像自动分割的定量评估","authors":"Yao-Wen Liang, Yu-Ting Fang, Ting-Chun Lin, Cheng-Ru Yang, Chih-Chang Chang, Hsuan-Kan Chang, Chin-Chu Ko, Tsung-Hsi Tu, Li-Yu Fay, Jau-Ching Wu, Wen-Cheng Huang, Hsiang-Wei Hu, You-Yin Chen, Chao-Hung Kuo","doi":"10.14245/ns.2448060.030","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.</p><p><strong>Methods: </strong>Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net's segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.</p><p><strong>Results: </strong>The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.</p><p><strong>Conclusion: </strong>Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.</p>","PeriodicalId":19269,"journal":{"name":"Neurospine","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224749/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images.\",\"authors\":\"Yao-Wen Liang, Yu-Ting Fang, Ting-Chun Lin, Cheng-Ru Yang, Chih-Chang Chang, Hsuan-Kan Chang, Chin-Chu Ko, Tsung-Hsi Tu, Li-Yu Fay, Jau-Ching Wu, Wen-Cheng Huang, Hsiang-Wei Hu, You-Yin Chen, Chao-Hung Kuo\",\"doi\":\"10.14245/ns.2448060.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.</p><p><strong>Methods: </strong>Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net's segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.</p><p><strong>Results: </strong>The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.</p><p><strong>Conclusion: </strong>Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.</p>\",\"PeriodicalId\":19269,\"journal\":{\"name\":\"Neurospine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurospine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14245/ns.2448060.030\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurospine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14245/ns.2448060.030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在利用先进技术开发一种自动分割模型,从而克服腰椎成像,尤其是腰椎管狭窄症成像方面的挑战。传统的人工测量和病变检测方法受到主观性和低效率的限制。我们的目标是创建一个准确的自动分割模型,以识别腰椎磁共振成像扫描中的解剖结构:研究利用 539 名腰椎管狭窄症患者的数据集,利用残余 U-Net 对腰椎矢状和轴向磁共振图像进行语义分割。该模型经过训练可识别特定的组织类别,并采用几何算法对解剖结构进行量化。验证指标,如交集大于联合(IOU)和骰子系数,验证了残余 U-Net 的分割准确性。此外,还引入了一种新颖的旋转矩阵方法,用于检测椎间盘膨出、评估硬膜囊压缩和测量黄韧带厚度:结果:残余 U-Net 对腰椎结构的分割精度很高,不同组织类别和视图的平均 IOU 值从 0.82 到 0.93 不等。自动量化系统可测量椎间盘尺寸、硬膜囊直径、黄色韧带厚度和椎间盘水化程度。训练数据集和测试数据集之间的一致性确保了自动测量的稳健性:利用残余 U-Net 和深度学习进行的腰椎自动分割在识别解剖结构方面表现出很高的精确度,有助于对腰椎管狭窄症病例进行有效量化。旋转矩阵的引入增强了病变检测,有望提高诊断准确性,并为腰椎管狭窄症患者的治疗决策提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images.

Objective: This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.

Methods: Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net's segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.

Results: The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.

Conclusion: Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurospine
Neurospine Multiple-
CiteScore
5.80
自引率
18.80%
发文量
93
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信