Prashant Kumar , Gurwinder Singh , Rohan Bahadur , Zhixuan Li , Xiangwei Zhang , C.I. Sathish , Mercy R. Benzigar , Thi Kim Anh Tran , Nisha T. Padmanabhan , Sithara Radhakrishnan , Jith C Janardhanan , Christy Ann Biji , Ann Jini Mathews , Honey John , Ehsan Tavakkoli , Ramaswamy Murugavel , Soumyabrata Roy , Pulickel M. Ajayan , Ajayan Vinu
{"title":"硼吩的崛起","authors":"Prashant Kumar , Gurwinder Singh , Rohan Bahadur , Zhixuan Li , Xiangwei Zhang , C.I. Sathish , Mercy R. Benzigar , Thi Kim Anh Tran , Nisha T. Padmanabhan , Sithara Radhakrishnan , Jith C Janardhanan , Christy Ann Biji , Ann Jini Mathews , Honey John , Ehsan Tavakkoli , Ramaswamy Murugavel , Soumyabrata Roy , Pulickel M. Ajayan , Ajayan Vinu","doi":"10.1016/j.pmatsci.2024.101331","DOIUrl":null,"url":null,"abstract":"<div><p>Borophene stands out uniquely among Xenes with its metallic character, Dirac nature, exceptional electron mobility, thermal conductivity, and Young’s moduli—surpassing graphene. Invented in 2015, various methods, including atomic layer deposition, molecular beam epitaxy, and chemical vapor deposition, have successfully been demonstrated to realize substrate-supported crystal growth. Top-down approaches like micromechanical, sonochemical, solvothermal and modified hummer’s techniques have also been employed. Thanks to its high electronic mobility, borophene serves as an active material for ultrafast sensing of light, gases, molecules, and strain. Its metallic behaviour, electrochemical activity, and anti-corrosive nature make it ideal for applications in energy storage and catalysis. It has been proven effective as an electrocatalyst for HER, OER, water splitting, CO<sub>2</sub> reduction, and NH<sub>3</sub> reduction reactions. Beyond this, borophene has found utility in bioimaging, biosensing, and various biomedical applications. A special emphasis will be given on the borophene nanoarchitectonics i.e. doped borophene and borophene-based hybrids with other 2D materials and nanoparticles and the theoretical understanding of these emerging materials systems to gain more insights on their electronic structure and properties, aiming to manipulate borophene for tailored applications.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101331"},"PeriodicalIF":33.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001002/pdfft?md5=8327b74d988a3883b8f5c20c285c5481&pid=1-s2.0-S0079642524001002-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The rise of borophene\",\"authors\":\"Prashant Kumar , Gurwinder Singh , Rohan Bahadur , Zhixuan Li , Xiangwei Zhang , C.I. Sathish , Mercy R. Benzigar , Thi Kim Anh Tran , Nisha T. Padmanabhan , Sithara Radhakrishnan , Jith C Janardhanan , Christy Ann Biji , Ann Jini Mathews , Honey John , Ehsan Tavakkoli , Ramaswamy Murugavel , Soumyabrata Roy , Pulickel M. Ajayan , Ajayan Vinu\",\"doi\":\"10.1016/j.pmatsci.2024.101331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Borophene stands out uniquely among Xenes with its metallic character, Dirac nature, exceptional electron mobility, thermal conductivity, and Young’s moduli—surpassing graphene. Invented in 2015, various methods, including atomic layer deposition, molecular beam epitaxy, and chemical vapor deposition, have successfully been demonstrated to realize substrate-supported crystal growth. Top-down approaches like micromechanical, sonochemical, solvothermal and modified hummer’s techniques have also been employed. Thanks to its high electronic mobility, borophene serves as an active material for ultrafast sensing of light, gases, molecules, and strain. Its metallic behaviour, electrochemical activity, and anti-corrosive nature make it ideal for applications in energy storage and catalysis. It has been proven effective as an electrocatalyst for HER, OER, water splitting, CO<sub>2</sub> reduction, and NH<sub>3</sub> reduction reactions. Beyond this, borophene has found utility in bioimaging, biosensing, and various biomedical applications. A special emphasis will be given on the borophene nanoarchitectonics i.e. doped borophene and borophene-based hybrids with other 2D materials and nanoparticles and the theoretical understanding of these emerging materials systems to gain more insights on their electronic structure and properties, aiming to manipulate borophene for tailored applications.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"146 \",\"pages\":\"Article 101331\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079642524001002/pdfft?md5=8327b74d988a3883b8f5c20c285c5481&pid=1-s2.0-S0079642524001002-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524001002\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524001002","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Borophene stands out uniquely among Xenes with its metallic character, Dirac nature, exceptional electron mobility, thermal conductivity, and Young’s moduli—surpassing graphene. Invented in 2015, various methods, including atomic layer deposition, molecular beam epitaxy, and chemical vapor deposition, have successfully been demonstrated to realize substrate-supported crystal growth. Top-down approaches like micromechanical, sonochemical, solvothermal and modified hummer’s techniques have also been employed. Thanks to its high electronic mobility, borophene serves as an active material for ultrafast sensing of light, gases, molecules, and strain. Its metallic behaviour, electrochemical activity, and anti-corrosive nature make it ideal for applications in energy storage and catalysis. It has been proven effective as an electrocatalyst for HER, OER, water splitting, CO2 reduction, and NH3 reduction reactions. Beyond this, borophene has found utility in bioimaging, biosensing, and various biomedical applications. A special emphasis will be given on the borophene nanoarchitectonics i.e. doped borophene and borophene-based hybrids with other 2D materials and nanoparticles and the theoretical understanding of these emerging materials systems to gain more insights on their electronic structure and properties, aiming to manipulate borophene for tailored applications.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.