特征值倍数为 n - d 的最小图形

IF 1 3区 数学 Q1 MATHEMATICS
Yuanshuai Zhang , Dein Wong , Wenhao Zhen
{"title":"特征值倍数为 n - d 的最小图形","authors":"Yuanshuai Zhang ,&nbsp;Dein Wong ,&nbsp;Wenhao Zhen","doi":"10.1016/j.laa.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><p>For a connected graph <em>G</em> with order <em>n</em>, let <span><math><mi>e</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the number of its distinct eigenvalues and <em>d</em> be the diameter. We denote by <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> the eigenvalue multiplicity of <em>μ</em> in <em>G</em>. It is well known that <span><math><mi>e</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>d</mi><mo>+</mo><mn>1</mn></math></span>, which shows <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>d</mi></math></span> for any real number <em>μ</em>. A graph is called <span><math><mi>m</mi><mi>i</mi><mi>n</mi><mi>i</mi><mi>m</mi><mi>a</mi><mi>l</mi></math></span> if <span><math><mi>e</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>d</mi><mo>+</mo><mn>1</mn></math></span>. In 2013, Wong et al. characterize all minimal graphs with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>d</mi></math></span>. In this paper, by applying the star complement theory, we prove that if <em>G</em> is not a path and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>d</mi></math></span>, then <span><math><mi>μ</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>}</mo></math></span>. Furthermore, we completely characterize all minimal graphs with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>d</mi></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal graphs with eigenvalue multiplicity of n − d\",\"authors\":\"Yuanshuai Zhang ,&nbsp;Dein Wong ,&nbsp;Wenhao Zhen\",\"doi\":\"10.1016/j.laa.2024.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a connected graph <em>G</em> with order <em>n</em>, let <span><math><mi>e</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the number of its distinct eigenvalues and <em>d</em> be the diameter. We denote by <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> the eigenvalue multiplicity of <em>μ</em> in <em>G</em>. It is well known that <span><math><mi>e</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>d</mi><mo>+</mo><mn>1</mn></math></span>, which shows <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>d</mi></math></span> for any real number <em>μ</em>. A graph is called <span><math><mi>m</mi><mi>i</mi><mi>n</mi><mi>i</mi><mi>m</mi><mi>a</mi><mi>l</mi></math></span> if <span><math><mi>e</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>d</mi><mo>+</mo><mn>1</mn></math></span>. In 2013, Wong et al. characterize all minimal graphs with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>d</mi></math></span>. In this paper, by applying the star complement theory, we prove that if <em>G</em> is not a path and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>d</mi></math></span>, then <span><math><mi>μ</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>}</mo></math></span>. Furthermore, we completely characterize all minimal graphs with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>d</mi></math></span>.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524002696\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002696","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于阶数为 n 的连通图 G,让 e(G) 表示其不同特征值的个数,d 表示直径。众所周知,e(G)≥d+1,这表明对于任意实数 μ,mG(μ)≤n-d。如果 e(G)=d+1 ,则称为最小图。2013 年,Wong 等人描述了 mG(0)=n-d 的所有最小图。在本文中,我们运用星形补码理论证明,如果 G 不是路径,且 mG(μ)=n-d 时,则 μ∈{0,-1}。此外,我们完全描述了所有 mG(-1)=n-d 的最小图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal graphs with eigenvalue multiplicity of n − d

For a connected graph G with order n, let e(G) be the number of its distinct eigenvalues and d be the diameter. We denote by mG(μ) the eigenvalue multiplicity of μ in G. It is well known that e(G)d+1, which shows mG(μ)nd for any real number μ. A graph is called minimal if e(G)=d+1. In 2013, Wong et al. characterize all minimal graphs with mG(0)=nd. In this paper, by applying the star complement theory, we prove that if G is not a path and mG(μ)=nd, then μ{0,1}. Furthermore, we completely characterize all minimal graphs with mG(1)=nd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信