{"title":"利用无监督异常检测自动评估头骨X光片的准确性。","authors":"Haruyuki Watanabe, Yuina Ezawa, Eri Matsuyama, Yohan Kondo, Norio Hayashi, Sho Maruyama, Toshihiro Ogura, Masayuki Shimosegawa","doi":"10.3233/XST-230431","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiography plays an important role in medical care, and accurate positioning is essential for providing optimal quality images. Radiographs with insufficient diagnostic value are rejected, and retakes are required. However, determining the suitability of retaking radiographs is a qualitative evaluation.</p><p><strong>Objective: </strong>To evaluate skull radiograph accuracy automatically using an unsupervised learning-based autoencoder (AE) and a variational autoencoder (VAE). In this study, we eliminated visual qualitative evaluation and used unsupervised learning to identify skull radiography retakes from the quantitative evaluation.</p><p><strong>Methods: </strong>Five skull phantoms were imaged on radiographs, and 1,680 images were acquired. These images correspond to two categories: normal images captured at appropriate positions and images captured at inappropriate positions. This study verified the discriminatory ability of skull radiographs using anomaly detection methods.</p><p><strong>Results: </strong>The areas under the curves for AE and VAE were 0.7060 and 0.6707, respectively, in receiver operating characteristic analysis. Our proposed method showed a higher discrimination ability than those of previous studies which had an accuracy of 52%.</p><p><strong>Conclusions: </strong>Our findings suggest that the proposed method has high classification accuracy in determining the suitability of retaking skull radiographs. Automation of optimal image consideration, whether or not to retake radiographs, contributes to improving operational efficiency in busy X-ray imaging operations.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"1151-1162"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-evaluation of skull radiograph accuracy using unsupervised anomaly detection.\",\"authors\":\"Haruyuki Watanabe, Yuina Ezawa, Eri Matsuyama, Yohan Kondo, Norio Hayashi, Sho Maruyama, Toshihiro Ogura, Masayuki Shimosegawa\",\"doi\":\"10.3233/XST-230431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Radiography plays an important role in medical care, and accurate positioning is essential for providing optimal quality images. Radiographs with insufficient diagnostic value are rejected, and retakes are required. However, determining the suitability of retaking radiographs is a qualitative evaluation.</p><p><strong>Objective: </strong>To evaluate skull radiograph accuracy automatically using an unsupervised learning-based autoencoder (AE) and a variational autoencoder (VAE). In this study, we eliminated visual qualitative evaluation and used unsupervised learning to identify skull radiography retakes from the quantitative evaluation.</p><p><strong>Methods: </strong>Five skull phantoms were imaged on radiographs, and 1,680 images were acquired. These images correspond to two categories: normal images captured at appropriate positions and images captured at inappropriate positions. This study verified the discriminatory ability of skull radiographs using anomaly detection methods.</p><p><strong>Results: </strong>The areas under the curves for AE and VAE were 0.7060 and 0.6707, respectively, in receiver operating characteristic analysis. Our proposed method showed a higher discrimination ability than those of previous studies which had an accuracy of 52%.</p><p><strong>Conclusions: </strong>Our findings suggest that the proposed method has high classification accuracy in determining the suitability of retaking skull radiographs. Automation of optimal image consideration, whether or not to retake radiographs, contributes to improving operational efficiency in busy X-ray imaging operations.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"1151-1162\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-230431\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230431","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
摘要
背景:放射摄影在医疗护理中发挥着重要作用,而准确的定位对于提供最佳质量的图像至关重要。诊断价值不足的射线照片会被拒绝,需要重新拍摄。然而,确定重拍 X 光片是否合适是一项定性评估:使用基于无监督学习的自动编码器(AE)和变异自动编码器(VAE)自动评估头骨X光片的准确性。在这项研究中,我们取消了视觉定性评估,并使用无监督学习从定量评估中识别头骨X光摄影重拍:方法:对五个颅骨模型进行放射成像,共获取 1,680 张图像。这些图像分为两类:在适当位置拍摄的正常图像和在不适当位置拍摄的图像。这项研究利用异常检测方法验证了头骨X光片的鉴别能力:在接收器操作特性分析中,AE 和 VAE 的曲线下面积分别为 0.7060 和 0.6707。我们提出的方法比以往研究的辨别能力更高,以往研究的准确率为 52%:我们的研究结果表明,所提出的方法在确定是否适合重拍头颅X光片方面具有很高的分类准确性。在繁忙的 X 射线成像操作中,自动进行是否重拍的最佳图像考虑有助于提高操作效率。
Auto-evaluation of skull radiograph accuracy using unsupervised anomaly detection.
Background: Radiography plays an important role in medical care, and accurate positioning is essential for providing optimal quality images. Radiographs with insufficient diagnostic value are rejected, and retakes are required. However, determining the suitability of retaking radiographs is a qualitative evaluation.
Objective: To evaluate skull radiograph accuracy automatically using an unsupervised learning-based autoencoder (AE) and a variational autoencoder (VAE). In this study, we eliminated visual qualitative evaluation and used unsupervised learning to identify skull radiography retakes from the quantitative evaluation.
Methods: Five skull phantoms were imaged on radiographs, and 1,680 images were acquired. These images correspond to two categories: normal images captured at appropriate positions and images captured at inappropriate positions. This study verified the discriminatory ability of skull radiographs using anomaly detection methods.
Results: The areas under the curves for AE and VAE were 0.7060 and 0.6707, respectively, in receiver operating characteristic analysis. Our proposed method showed a higher discrimination ability than those of previous studies which had an accuracy of 52%.
Conclusions: Our findings suggest that the proposed method has high classification accuracy in determining the suitability of retaking skull radiographs. Automation of optimal image consideration, whether or not to retake radiographs, contributes to improving operational efficiency in busy X-ray imaging operations.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes