开发和验证机器学习算法,预测接受丁丙诺啡治疗阿片类药物使用障碍的美国退伍军人的保留率、过量使用率和全因死亡率。

IF 1.6 4区 医学 Q3 SUBSTANCE ABUSE
Corey J Hayes, Nahiyan Bin Noor, Rebecca A Raciborski, Bradley Martin, Adam Gordon, Katherine Hoggatt, Teresa Hudson, Michael Cucciare
{"title":"开发和验证机器学习算法,预测接受丁丙诺啡治疗阿片类药物使用障碍的美国退伍军人的保留率、过量使用率和全因死亡率。","authors":"Corey J Hayes, Nahiyan Bin Noor, Rebecca A Raciborski, Bradley Martin, Adam Gordon, Katherine Hoggatt, Teresa Hudson, Michael Cucciare","doi":"10.1080/10550887.2024.2363035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Buprenorphine for opioid use disorder (B-MOUD) is essential to improving patient outcomes; however, retention is essential.</p><p><strong>Objective: </strong>To develop and validate machine-learning algorithms predicting retention, overdoses, and all-cause mortality among US military veterans initiating B-MOUD.</p><p><strong>Methods: </strong>Veterans initiating B-MOUD from fiscal years 2006-2020 were identified. Veterans' B-MOUD episodes were randomly divided into training (80%;<i>n</i> = 45,238) and testing samples (20%;<i>n</i> = 11,309). Candidate algorithms [multiple logistic regression, least absolute shrinkage and selection operator regression, random forest (RF), gradient boosting machine (GBM), and deep neural network (DNN)] were used to build and validate classification models to predict six binary outcomes: 1) B-MOUD retention, 2) any overdose, 3) opioid-related overdose, 4) overdose death, 5) opioid overdose death, and 6) all-cause mortality. Model performance was assessed using standard classification statistics [e.g., area under the receiver operating characteristic curve (AUC-ROC)].</p><p><strong>Results: </strong>Episodes in the training sample were 93.0% male, 78.0% White, 72.3% unemployed, and 48.3% had a concurrent drug use disorder. The GBM model slightly outperformed others in predicting B-MOUD retention (AUC-ROC = 0.72). RF models outperformed others in predicting any overdose (AUC-ROC = 0.77) and opioid overdose (AUC-ROC = 0.77). RF and GBM outperformed other models for overdose death (AUC-ROC = 0.74 for both), and RF and DNN outperformed other models for opioid overdose death (RF AUC-ROC = 0.79; DNN AUC-ROC = 0.78). RF and GBM also outperformed other models for all-cause mortality (AUC-ROC = 0.76 for both). No single predictor accounted for >3% of the model's variance.</p><p><strong>Conclusions: </strong>Machine-learning algorithms can accurately predict OUD-related outcomes with moderate predictive performance; however, prediction of these outcomes is driven by many characteristics.</p>","PeriodicalId":47493,"journal":{"name":"Journal of Addictive Diseases","volume":" ","pages":"1-18"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of machine-learning algorithms predicting retention, overdoses, and all-cause mortality among US military veterans treated with buprenorphine for opioid use disorder.\",\"authors\":\"Corey J Hayes, Nahiyan Bin Noor, Rebecca A Raciborski, Bradley Martin, Adam Gordon, Katherine Hoggatt, Teresa Hudson, Michael Cucciare\",\"doi\":\"10.1080/10550887.2024.2363035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Buprenorphine for opioid use disorder (B-MOUD) is essential to improving patient outcomes; however, retention is essential.</p><p><strong>Objective: </strong>To develop and validate machine-learning algorithms predicting retention, overdoses, and all-cause mortality among US military veterans initiating B-MOUD.</p><p><strong>Methods: </strong>Veterans initiating B-MOUD from fiscal years 2006-2020 were identified. Veterans' B-MOUD episodes were randomly divided into training (80%;<i>n</i> = 45,238) and testing samples (20%;<i>n</i> = 11,309). Candidate algorithms [multiple logistic regression, least absolute shrinkage and selection operator regression, random forest (RF), gradient boosting machine (GBM), and deep neural network (DNN)] were used to build and validate classification models to predict six binary outcomes: 1) B-MOUD retention, 2) any overdose, 3) opioid-related overdose, 4) overdose death, 5) opioid overdose death, and 6) all-cause mortality. Model performance was assessed using standard classification statistics [e.g., area under the receiver operating characteristic curve (AUC-ROC)].</p><p><strong>Results: </strong>Episodes in the training sample were 93.0% male, 78.0% White, 72.3% unemployed, and 48.3% had a concurrent drug use disorder. The GBM model slightly outperformed others in predicting B-MOUD retention (AUC-ROC = 0.72). RF models outperformed others in predicting any overdose (AUC-ROC = 0.77) and opioid overdose (AUC-ROC = 0.77). RF and GBM outperformed other models for overdose death (AUC-ROC = 0.74 for both), and RF and DNN outperformed other models for opioid overdose death (RF AUC-ROC = 0.79; DNN AUC-ROC = 0.78). RF and GBM also outperformed other models for all-cause mortality (AUC-ROC = 0.76 for both). No single predictor accounted for >3% of the model's variance.</p><p><strong>Conclusions: </strong>Machine-learning algorithms can accurately predict OUD-related outcomes with moderate predictive performance; however, prediction of these outcomes is driven by many characteristics.</p>\",\"PeriodicalId\":47493,\"journal\":{\"name\":\"Journal of Addictive Diseases\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Addictive Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10550887.2024.2363035\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SUBSTANCE ABUSE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Addictive Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10550887.2024.2363035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SUBSTANCE ABUSE","Score":null,"Total":0}
引用次数: 0

摘要

背景:治疗阿片类药物使用障碍的丁丙诺啡(B-MOUD)对改善患者的治疗效果至关重要;然而,患者的保留率也至关重要:丁丙诺啡治疗阿片类药物使用障碍(B-MOUD)对改善患者的治疗效果至关重要,但保留率也至关重要:目的:开发并验证机器学习算法,预测开始接受 B-MOUD 治疗的美国退伍军人的保留率、过量用药率和全因死亡率:方法: 对 2006-2020 财年开始接受 B-MOUD 治疗的退伍军人进行识别。退伍军人的 B-MOUD 事件被随机分为训练样本(80%;n = 45238)和测试样本(20%;n = 11309)。候选算法[多重逻辑回归、最小绝对收缩和选择算子回归、随机森林(RF)、梯度提升机(GBM)和深度神经网络(DNN)]被用来建立和验证分类模型,以预测六种二元结果:1)B-MOUD 保留率;2)任何用药过量;3)阿片类药物相关用药过量;4)用药过量死亡;5)阿片类药物用药过量死亡;6)全因死亡率。使用标准分类统计[如接收者操作特征曲线下面积(AUC-ROC)]评估模型性能:训练样本中 93.0% 为男性,78.0% 为白人,72.3% 为失业者,48.3% 同时患有药物使用障碍。GBM模型在预测B-MOUD保留率方面略优于其他模型(AUC-ROC = 0.72)。RF 模型在预测任何药物过量(AUC-ROC = 0.77)和阿片类药物过量(AUC-ROC = 0.77)方面的表现优于其他模型。RF 和 GBM 在预测过量用药死亡方面的表现优于其他模型(两者的 AUC-ROC 均为 0.74),RF 和 DNN 在预测阿片类药物过量用药死亡方面的表现优于其他模型(RF AUC-ROC = 0.79;DNN AUC-ROC = 0.78)。在全因死亡率方面,RF 和 GBM 的表现也优于其他模型(两者的 AUC-ROC 均为 0.76)。没有一个预测因子占模型方差的 3% 以上:机器学习算法可以准确预测与 OUD 相关的结果,预测效果一般;但是,这些结果的预测受许多特征的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and validation of machine-learning algorithms predicting retention, overdoses, and all-cause mortality among US military veterans treated with buprenorphine for opioid use disorder.

Background: Buprenorphine for opioid use disorder (B-MOUD) is essential to improving patient outcomes; however, retention is essential.

Objective: To develop and validate machine-learning algorithms predicting retention, overdoses, and all-cause mortality among US military veterans initiating B-MOUD.

Methods: Veterans initiating B-MOUD from fiscal years 2006-2020 were identified. Veterans' B-MOUD episodes were randomly divided into training (80%;n = 45,238) and testing samples (20%;n = 11,309). Candidate algorithms [multiple logistic regression, least absolute shrinkage and selection operator regression, random forest (RF), gradient boosting machine (GBM), and deep neural network (DNN)] were used to build and validate classification models to predict six binary outcomes: 1) B-MOUD retention, 2) any overdose, 3) opioid-related overdose, 4) overdose death, 5) opioid overdose death, and 6) all-cause mortality. Model performance was assessed using standard classification statistics [e.g., area under the receiver operating characteristic curve (AUC-ROC)].

Results: Episodes in the training sample were 93.0% male, 78.0% White, 72.3% unemployed, and 48.3% had a concurrent drug use disorder. The GBM model slightly outperformed others in predicting B-MOUD retention (AUC-ROC = 0.72). RF models outperformed others in predicting any overdose (AUC-ROC = 0.77) and opioid overdose (AUC-ROC = 0.77). RF and GBM outperformed other models for overdose death (AUC-ROC = 0.74 for both), and RF and DNN outperformed other models for opioid overdose death (RF AUC-ROC = 0.79; DNN AUC-ROC = 0.78). RF and GBM also outperformed other models for all-cause mortality (AUC-ROC = 0.76 for both). No single predictor accounted for >3% of the model's variance.

Conclusions: Machine-learning algorithms can accurately predict OUD-related outcomes with moderate predictive performance; however, prediction of these outcomes is driven by many characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
4.30%
发文量
69
期刊介绍: The Journal of Addictive Diseases is an essential, comprehensive resource covering the full range of addictions for today"s addiction professional. This in-depth, practical journal helps you stay on top of the vital issues and the clinical skills necessary to ensure effective practice. The latest research, treatments, and public policy issues in addiction medicine are presented in a fully integrated, multi-specialty perspective. Top researchers and respected leaders in addiction issues share their knowledge and insights to keep you up-to-date on the most important research and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信