Cassiano Ricardo Alves Faria Diniz, Ana Paula Crestani, Plinio Cabrera Casarotto, Caroline Biojone, Cecilia Cannarozzo, Frederike Winkel, Mikhail A Prozorov, Erik F Kot, Sergey A Goncharuk, Danilo Benette Marques, Leonardo Rakauskas Zacharias, Henri Autio, Madhusmita Priyadarshini Sahu, Anna Bárbara Borges-Assis, João Pereira Leite, Konstantin S Mineev, Eero Castrén, Leonardo Barbosa Moraes Resstel
{"title":"氟西汀和氯胺酮会触发 p75NTR 蛋白水解途径,并通过 p75NTR 增强消退记忆和大脑可塑性。","authors":"Cassiano Ricardo Alves Faria Diniz, Ana Paula Crestani, Plinio Cabrera Casarotto, Caroline Biojone, Cecilia Cannarozzo, Frederike Winkel, Mikhail A Prozorov, Erik F Kot, Sergey A Goncharuk, Danilo Benette Marques, Leonardo Rakauskas Zacharias, Henri Autio, Madhusmita Priyadarshini Sahu, Anna Bárbara Borges-Assis, João Pereira Leite, Konstantin S Mineev, Eero Castrén, Leonardo Barbosa Moraes Resstel","doi":"10.1016/j.biopsych.2024.06.021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diverse antidepressants were recently described to bind to TrkB (tyrosine kinase B) and drive a positive allosteric modulation of endogenous BDNF (brain-derived neurotrophic factor). Although neurotrophins such as BDNF can bind to p75NTR (p75 neurotrophin receptor), their precursors are the high-affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a crosslike conformation dimer and carry a cholesterol-recognition amino acid consensus in the transmembrane domain. As such qualities were found to be crucial for antidepressants to bind to TrkB and drive behavioral and neuroplasticity effects, we hypothesized that their effects might also depend on p75NTR.</p><p><strong>Methods: </strong>Enzyme-linked immunosorbent assay-based binding and nuclear magnetic resonance spectroscopy were performed to assess whether antidepressants would bind to p75NTR. HEK293T cells and a variety of in vitro assays were used to investigate whether fluoxetine (FLX) or ketamine (KET) would trigger any α- and γ-secretase-dependent p75NTR proteolysis and lead to p75NTR nuclear localization. Ocular dominance shift was performed with male and female p75NTR knockout mice to study the effects of KET and FLX on brain plasticity, in addition to pharmacological interventions to verify how p75NTR signaling is important for the effects of KET and FLX in enhancing extinction memory in male wild-type mice and rats.</p><p><strong>Results: </strong>Antidepressants were found to bind to p75NTR. FLX and KET triggered the p75NTR proteolytic pathway and induced p75NTR-dependent behavioral/neuroplasticity changes.</p><p><strong>Conclusions: </strong>We hypothesize that antidepressants co-opt both BDNF/TrkB and proBDNF/p75NTR systems to induce a more efficient activity-dependent synaptic competition, thereby boosting the brain's ability for remodeling.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":"248-260"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluoxetine and Ketamine Enhance Extinction Memory and Brain Plasticity by Triggering the p75 Neurotrophin Receptor Proteolytic Pathway.\",\"authors\":\"Cassiano Ricardo Alves Faria Diniz, Ana Paula Crestani, Plinio Cabrera Casarotto, Caroline Biojone, Cecilia Cannarozzo, Frederike Winkel, Mikhail A Prozorov, Erik F Kot, Sergey A Goncharuk, Danilo Benette Marques, Leonardo Rakauskas Zacharias, Henri Autio, Madhusmita Priyadarshini Sahu, Anna Bárbara Borges-Assis, João Pereira Leite, Konstantin S Mineev, Eero Castrén, Leonardo Barbosa Moraes Resstel\",\"doi\":\"10.1016/j.biopsych.2024.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diverse antidepressants were recently described to bind to TrkB (tyrosine kinase B) and drive a positive allosteric modulation of endogenous BDNF (brain-derived neurotrophic factor). Although neurotrophins such as BDNF can bind to p75NTR (p75 neurotrophin receptor), their precursors are the high-affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a crosslike conformation dimer and carry a cholesterol-recognition amino acid consensus in the transmembrane domain. As such qualities were found to be crucial for antidepressants to bind to TrkB and drive behavioral and neuroplasticity effects, we hypothesized that their effects might also depend on p75NTR.</p><p><strong>Methods: </strong>Enzyme-linked immunosorbent assay-based binding and nuclear magnetic resonance spectroscopy were performed to assess whether antidepressants would bind to p75NTR. HEK293T cells and a variety of in vitro assays were used to investigate whether fluoxetine (FLX) or ketamine (KET) would trigger any α- and γ-secretase-dependent p75NTR proteolysis and lead to p75NTR nuclear localization. Ocular dominance shift was performed with male and female p75NTR knockout mice to study the effects of KET and FLX on brain plasticity, in addition to pharmacological interventions to verify how p75NTR signaling is important for the effects of KET and FLX in enhancing extinction memory in male wild-type mice and rats.</p><p><strong>Results: </strong>Antidepressants were found to bind to p75NTR. FLX and KET triggered the p75NTR proteolytic pathway and induced p75NTR-dependent behavioral/neuroplasticity changes.</p><p><strong>Conclusions: </strong>We hypothesize that antidepressants co-opt both BDNF/TrkB and proBDNF/p75NTR systems to induce a more efficient activity-dependent synaptic competition, thereby boosting the brain's ability for remodeling.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":\" \",\"pages\":\"248-260\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.06.021\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.06.021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Fluoxetine and Ketamine Enhance Extinction Memory and Brain Plasticity by Triggering the p75 Neurotrophin Receptor Proteolytic Pathway.
Background: Diverse antidepressants were recently described to bind to TrkB (tyrosine kinase B) and drive a positive allosteric modulation of endogenous BDNF (brain-derived neurotrophic factor). Although neurotrophins such as BDNF can bind to p75NTR (p75 neurotrophin receptor), their precursors are the high-affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a crosslike conformation dimer and carry a cholesterol-recognition amino acid consensus in the transmembrane domain. As such qualities were found to be crucial for antidepressants to bind to TrkB and drive behavioral and neuroplasticity effects, we hypothesized that their effects might also depend on p75NTR.
Methods: Enzyme-linked immunosorbent assay-based binding and nuclear magnetic resonance spectroscopy were performed to assess whether antidepressants would bind to p75NTR. HEK293T cells and a variety of in vitro assays were used to investigate whether fluoxetine (FLX) or ketamine (KET) would trigger any α- and γ-secretase-dependent p75NTR proteolysis and lead to p75NTR nuclear localization. Ocular dominance shift was performed with male and female p75NTR knockout mice to study the effects of KET and FLX on brain plasticity, in addition to pharmacological interventions to verify how p75NTR signaling is important for the effects of KET and FLX in enhancing extinction memory in male wild-type mice and rats.
Results: Antidepressants were found to bind to p75NTR. FLX and KET triggered the p75NTR proteolytic pathway and induced p75NTR-dependent behavioral/neuroplasticity changes.
Conclusions: We hypothesize that antidepressants co-opt both BDNF/TrkB and proBDNF/p75NTR systems to induce a more efficient activity-dependent synaptic competition, thereby boosting the brain's ability for remodeling.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.