Tom Bresser, Tessa F Blanken, Siemon C de Lange, Jeanne Leerssen, Jessica C Foster-Dingley, Oti Lakbila-Kamal, Rick Wassing, Jennifer R Ramautar, Diederick Stoffers, Martijn P van den Heuvel, Eus J W Van Someren
{"title":"失眠亚型在大脑结构连接方面存在差异。","authors":"Tom Bresser, Tessa F Blanken, Siemon C de Lange, Jeanne Leerssen, Jessica C Foster-Dingley, Oti Lakbila-Kamal, Rick Wassing, Jennifer R Ramautar, Diederick Stoffers, Martijn P van den Heuvel, Eus J W Van Someren","doi":"10.1016/j.biopsych.2024.06.014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Insomnia disorder is the most common sleep disorder. A better understanding of insomnia-related deviations in the brain could inspire better treatment. Insufficiently recognized heterogeneity within the insomnia population could obscure detection of involved brain circuits. In the current study, we investigated whether structural brain connectivity deviations differed between recently discovered and validated insomnia subtypes.</p><p><strong>Methods: </strong>Structural and diffusion-weighted 3T magnetic resonance imaging data from 4 independent studies were harmonized. The sample consisted of 73 control participants without sleep complaints and 204 participants with insomnia who were grouped into 5 insomnia subtypes based on their fingerprint of mood and personality traits assessed with the Insomnia Type Questionnaire. Linear regression correcting for age and sex was used to evaluate group differences in structural connectivity strength, indicated by fractional anisotropy, streamline volume density, and mean diffusivity and evaluated within 3 different atlases.</p><p><strong>Results: </strong>Insomnia subtypes showed differentiating profiles of deviating structural connectivity that were concentrated in different functional networks. Permutation testing against randomly drawn heterogeneous subsamples indicated significant specificity of deviation profiles in 4 of the 5 subtypes: highly distressed, moderately distressed reward sensitive, slightly distressed low reactive, and slightly distressed high reactive. Connectivity deviation profile significance ranged from p = .001 to p = .049 for different resolutions of brain parcellation and connectivity weight.</p><p><strong>Conclusions: </strong>Our results provide an initial indication that different insomnia subtypes exhibit distinct profiles of deviations in structural brain connectivity. Subtyping insomnia may be essential for a better understanding of brain mechanisms that contribute to insomnia vulnerability.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":"302-312"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insomnia Subtypes Have Differentiating Deviations in Brain Structural Connectivity.\",\"authors\":\"Tom Bresser, Tessa F Blanken, Siemon C de Lange, Jeanne Leerssen, Jessica C Foster-Dingley, Oti Lakbila-Kamal, Rick Wassing, Jennifer R Ramautar, Diederick Stoffers, Martijn P van den Heuvel, Eus J W Van Someren\",\"doi\":\"10.1016/j.biopsych.2024.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Insomnia disorder is the most common sleep disorder. A better understanding of insomnia-related deviations in the brain could inspire better treatment. Insufficiently recognized heterogeneity within the insomnia population could obscure detection of involved brain circuits. In the current study, we investigated whether structural brain connectivity deviations differed between recently discovered and validated insomnia subtypes.</p><p><strong>Methods: </strong>Structural and diffusion-weighted 3T magnetic resonance imaging data from 4 independent studies were harmonized. The sample consisted of 73 control participants without sleep complaints and 204 participants with insomnia who were grouped into 5 insomnia subtypes based on their fingerprint of mood and personality traits assessed with the Insomnia Type Questionnaire. Linear regression correcting for age and sex was used to evaluate group differences in structural connectivity strength, indicated by fractional anisotropy, streamline volume density, and mean diffusivity and evaluated within 3 different atlases.</p><p><strong>Results: </strong>Insomnia subtypes showed differentiating profiles of deviating structural connectivity that were concentrated in different functional networks. Permutation testing against randomly drawn heterogeneous subsamples indicated significant specificity of deviation profiles in 4 of the 5 subtypes: highly distressed, moderately distressed reward sensitive, slightly distressed low reactive, and slightly distressed high reactive. Connectivity deviation profile significance ranged from p = .001 to p = .049 for different resolutions of brain parcellation and connectivity weight.</p><p><strong>Conclusions: </strong>Our results provide an initial indication that different insomnia subtypes exhibit distinct profiles of deviations in structural brain connectivity. Subtyping insomnia may be essential for a better understanding of brain mechanisms that contribute to insomnia vulnerability.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":\" \",\"pages\":\"302-312\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.06.014\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.06.014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Insomnia Subtypes Have Differentiating Deviations in Brain Structural Connectivity.
Background: Insomnia disorder is the most common sleep disorder. A better understanding of insomnia-related deviations in the brain could inspire better treatment. Insufficiently recognized heterogeneity within the insomnia population could obscure detection of involved brain circuits. In the current study, we investigated whether structural brain connectivity deviations differed between recently discovered and validated insomnia subtypes.
Methods: Structural and diffusion-weighted 3T magnetic resonance imaging data from 4 independent studies were harmonized. The sample consisted of 73 control participants without sleep complaints and 204 participants with insomnia who were grouped into 5 insomnia subtypes based on their fingerprint of mood and personality traits assessed with the Insomnia Type Questionnaire. Linear regression correcting for age and sex was used to evaluate group differences in structural connectivity strength, indicated by fractional anisotropy, streamline volume density, and mean diffusivity and evaluated within 3 different atlases.
Results: Insomnia subtypes showed differentiating profiles of deviating structural connectivity that were concentrated in different functional networks. Permutation testing against randomly drawn heterogeneous subsamples indicated significant specificity of deviation profiles in 4 of the 5 subtypes: highly distressed, moderately distressed reward sensitive, slightly distressed low reactive, and slightly distressed high reactive. Connectivity deviation profile significance ranged from p = .001 to p = .049 for different resolutions of brain parcellation and connectivity weight.
Conclusions: Our results provide an initial indication that different insomnia subtypes exhibit distinct profiles of deviations in structural brain connectivity. Subtyping insomnia may be essential for a better understanding of brain mechanisms that contribute to insomnia vulnerability.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.