可定制瞬态生物电子学和传感器的 3D 打印技术

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nicolas Fumeaux, Danick Briand
{"title":"可定制瞬态生物电子学和传感器的 3D 打印技术","authors":"Nicolas Fumeaux,&nbsp;Danick Briand","doi":"10.1002/aelm.202400058","DOIUrl":null,"url":null,"abstract":"<p>Transient electronics have emerged as a new category of devices that can degrade after their functional lifetime, offering tremendous potential as disposable sensors, actuators, wearables, and implants. Additive manufacturing methods represent a promising approach for patterning transient materials, yet examples of fully printed bioelectronic devices are scarce. This study introduces a fully digital 3D printing approach enabling the prototyping and customization of soft bioelectronics made of transient materials. The direct ink writing of poly(octamethylene maleate (anhydride) citrate) (POMaC) as an elastomeric matrix and of a shellac-carbon ink as a conductor is investigated. Precise and repeatable deposition of both structural and conductive features is achieved by optimizing printing parameters, i.e., the dispense gap, printing speed, and inlet pressure. Multi-material 3D printing enables the fabrication of functional transient devices. Notably, pressure and strain sensors are shown to operate in ranges relevant to implanted biomechanical monitoring. 3D-printed transient electrodes are demonstrated to be comparable to state-of-the-art devices in terms of impedance behavior. Finally, physical degradation of the materials is confirmed at physiological conditions. These fully digital additive manufacturing processes enable the monolithic fabrication of customizable transient bioelectronics with adaptable functions and geometries.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400058","citationCount":"0","resultStr":"{\"title\":\"3D Printing of Customizable Transient Bioelectronics and Sensors\",\"authors\":\"Nicolas Fumeaux,&nbsp;Danick Briand\",\"doi\":\"10.1002/aelm.202400058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transient electronics have emerged as a new category of devices that can degrade after their functional lifetime, offering tremendous potential as disposable sensors, actuators, wearables, and implants. Additive manufacturing methods represent a promising approach for patterning transient materials, yet examples of fully printed bioelectronic devices are scarce. This study introduces a fully digital 3D printing approach enabling the prototyping and customization of soft bioelectronics made of transient materials. The direct ink writing of poly(octamethylene maleate (anhydride) citrate) (POMaC) as an elastomeric matrix and of a shellac-carbon ink as a conductor is investigated. Precise and repeatable deposition of both structural and conductive features is achieved by optimizing printing parameters, i.e., the dispense gap, printing speed, and inlet pressure. Multi-material 3D printing enables the fabrication of functional transient devices. Notably, pressure and strain sensors are shown to operate in ranges relevant to implanted biomechanical monitoring. 3D-printed transient electrodes are demonstrated to be comparable to state-of-the-art devices in terms of impedance behavior. Finally, physical degradation of the materials is confirmed at physiological conditions. These fully digital additive manufacturing processes enable the monolithic fabrication of customizable transient bioelectronics with adaptable functions and geometries.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400058\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400058\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400058","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

瞬态电子器件是一种新型器件,在其功能寿命结束后可以降解,具有作为一次性传感器、致动器、可穿戴设备和植入物的巨大潜力。增材制造方法是一种很有前景的瞬态材料图案化方法,但完全打印的生物电子器件却很少。本研究介绍了一种全数字化三维打印方法,可实现瞬态材料软生物电子器件的原型设计和定制。研究了以聚(马来酸八亚甲基酯(酐)柠檬酸盐)(POMaC)为弹性基体、以虫胶-碳墨水为导体的直接墨水书写。通过优化打印参数,即分配间隙、打印速度和入口压力,实现了结构和导电特征的精确和可重复沉积。多材料三维打印技术实现了功能性瞬态设备的制造。值得注意的是,压力和应变传感器的工作范围与植入式生物力学监测相关。三维打印的瞬态电极在阻抗行为方面可与最先进的设备相媲美。最后,材料在生理条件下的物理降解也得到了证实。这些全数字化增材制造工艺可实现具有适应性功能和几何形状的可定制瞬态生物电子器件的整体制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D Printing of Customizable Transient Bioelectronics and Sensors

3D Printing of Customizable Transient Bioelectronics and Sensors

3D Printing of Customizable Transient Bioelectronics and Sensors

Transient electronics have emerged as a new category of devices that can degrade after their functional lifetime, offering tremendous potential as disposable sensors, actuators, wearables, and implants. Additive manufacturing methods represent a promising approach for patterning transient materials, yet examples of fully printed bioelectronic devices are scarce. This study introduces a fully digital 3D printing approach enabling the prototyping and customization of soft bioelectronics made of transient materials. The direct ink writing of poly(octamethylene maleate (anhydride) citrate) (POMaC) as an elastomeric matrix and of a shellac-carbon ink as a conductor is investigated. Precise and repeatable deposition of both structural and conductive features is achieved by optimizing printing parameters, i.e., the dispense gap, printing speed, and inlet pressure. Multi-material 3D printing enables the fabrication of functional transient devices. Notably, pressure and strain sensors are shown to operate in ranges relevant to implanted biomechanical monitoring. 3D-printed transient electrodes are demonstrated to be comparable to state-of-the-art devices in terms of impedance behavior. Finally, physical degradation of the materials is confirmed at physiological conditions. These fully digital additive manufacturing processes enable the monolithic fabrication of customizable transient bioelectronics with adaptable functions and geometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信